Your browser doesn't support javascript.
loading
Shear rate sensitizes bacterial pathogens to H2O2 stress.
Padron, Gilberto C; Shuppara, Alexander M; Sharma, Anuradha; Koch, Matthias D; Palalay, Jessica-Jae S; Radin, Jana N; Kehl-Fie, Thomas E; Imlay, James A; Sanfilippo, Joseph E.
Affiliation
  • Padron GC; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
  • Shuppara AM; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
  • Sharma A; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
  • Koch MD; Department of Biology, Texas A&M University, College Station, TX 77843.
  • Palalay JS; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
  • Radin JN; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
  • Kehl-Fie TE; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
  • Imlay JA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
  • Sanfilippo JE; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Proc Natl Acad Sci U S A ; 120(11): e2216774120, 2023 03 14.
Article de En | MEDLINE | ID: mdl-36888662
ABSTRACT
Cells regularly experience fluid flow in natural systems. However, most experimental systems rely on batch cell culture and fail to consider the effect of flow-driven dynamics on cell physiology. Using microfluidics and single-cell imaging, we discover that the interplay of physical shear rate (a measure of fluid flow) and chemical stress trigger a transcriptional response in the human pathogen Pseudomonas aeruginosa. In batch cell culture, cells protect themselves by quickly scavenging the ubiquitous chemical stressor hydrogen peroxide (H2O2) from the media. In microfluidic conditions, we observe that cell scavenging generates spatial gradients of H2O2. High shear rates replenish H2O2, abolish gradients, and generate a stress response. Combining mathematical simulations and biophysical experiments, we find that flow triggers an effect like "wind-chill" that sensitizes cells to H2O2 concentrations 100 to 1,000 times lower than traditionally studied in batch cell culture. Surprisingly, the shear rate and H2O2 concentration required to generate a transcriptional response closely match their respective values in the human bloodstream. Thus, our results explain a long-standing discrepancy between H2O2 levels in experimental and host environments. Finally, we demonstrate that the shear rate and H2O2 concentration found in the human bloodstream trigger gene expression in the blood-relevant human pathogen Staphylococcus aureus, suggesting that flow sensitizes bacteria to chemical stress in natural environments.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Bactéries / Peroxyde d'hydrogène Limites: Humans Langue: En Journal: Proc Natl Acad Sci U S A Année: 2023 Type de document: Article

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Bactéries / Peroxyde d'hydrogène Limites: Humans Langue: En Journal: Proc Natl Acad Sci U S A Année: 2023 Type de document: Article