Your browser doesn't support javascript.
loading
Methyl-CpG binding domain (MBD)2/3 specifically recognizes and binds to the genomic mCpG site with a ß-sheet in the MBD to affect embryonic development in Bombyx mori.
Fu, Tong-Yu; Ji, Shuang-Shun; Tian, Yu-Lin; Lin, Yi-Guang; Chen, Yu-Mei; Zhong, Qi-En; Zheng, Si-Chun; Xu, Guan-Feng.
Affiliation
  • Fu TY; Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.
  • Ji SS; Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.
  • Tian YL; Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.
  • Lin YG; Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.
  • Chen YM; Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.
  • Zhong QE; Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.
  • Zheng SC; Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.
  • Xu GF; Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.
Insect Sci ; 30(6): 1607-1621, 2023 Dec.
Article de En | MEDLINE | ID: mdl-36915030
ABSTRACT
Methyl-CpG (mCpG) binding domain (MBD) proteins especially bind with methylated DNA, and are involved in many important biological processes; however, the binding mechanism between insect MBD2/3 and mCpG remains unclear. In this study, we identified 2 isoforms of the MBD2/3 gene in Bombyx mori, MBD2/3-S and MBD2/3-L. Binding analysis of MBD2/3-L, MBD2/3-S, and 7 mutant MBD2/3-L proteins deficient in ß1-ß6 or α1 in the MBD showed that ß2-ß3-turns in the ß-sheet of the MBD are necessary for the formation of the MBD2/3-mCpG complex; furthermore, other secondary structures, namely, ß4-ß6 and an α-helix, play a role in stabilizing the ß-sheet structure to ensure that the MBD is able to bind mCpG. In addition, sequence alignment and binding analyses of different insect MBD2/3s indicated that insect MBD2/3s have an intact and conserved MBD that binds to the mCpG of target genes. Furthermore, MBD2/3 RNA interference results showed that MBD2/3-L plays a role in regulating B. mori embryonic development, similar to that of DNA methylation; however, MBD2/3-S without ß4-ß6 and α-helix does not alter embryonic development. These results suggest that MBD2/3-L recognizes and binds to mCpG through the intact ß-sheet structure in its MBD, thus ensuring silkworm embryonic development.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Bombyx / Protéines de liaison à l'ADN Limites: Animals Langue: En Journal: Insect Sci Année: 2023 Type de document: Article Pays d'affiliation: Chine

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Bombyx / Protéines de liaison à l'ADN Limites: Animals Langue: En Journal: Insect Sci Année: 2023 Type de document: Article Pays d'affiliation: Chine