Your browser doesn't support javascript.
loading
Knockout of cardiolipin synthase disrupts postnatal cardiac development by inhibiting the maturation of mitochondrial cristae.
bioRxiv ; 2023 Mar 10.
Article de En | MEDLINE | ID: mdl-36945411
ABSTRACT

Background:

Cardiomyocyte maturation requires a massive increase in respiratory enzymes and their assembly into long-lived complexes of oxidative phosphorylation (OXPHOS). The molecular mechanisms underlying the maturation of cardiac mitochondria have not been established.

Methods:

To determine whether the mitochondria-specific lipid cardiolipin is involved in cardiac maturation, we created a cardiomyocyte-restricted knockout (KO) of cardiolipin synthase ( Crls1 ) in mice and studied the postnatal development of the heart. We also measured the turnover rates of proteins and lipids in cardiolipin-deficient flight muscle from Drosophila, a tissue that has mitochondria with high OXPHOS activity like the heart.

Results:

Crls1KO mice survived the prenatal period but failed to accumulate OXPHOS proteins during postnatal maturation and succumbed to heart failure at the age of 2 weeks. Turnover measurements showed that the exceptionally long half-life of OXPHOS proteins is critically dependent on cardiolipin.

Conclusions:

Cardiolipin is essential for the postnatal maturation of cardiomyocytes because it allows mitochondrial cristae to accumulate OXPHOS proteins to a high concentration and to shield them from degradation.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: BioRxiv Année: 2023 Type de document: Article

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: BioRxiv Année: 2023 Type de document: Article
...