Your browser doesn't support javascript.
loading
Sensitivity of WRF/Chem simulated PM2.5 to initial/boundary conditions and planetary boundary layer parameterization schemes over the Indo-Gangetic Plain.
Gunwani, Preeti; Govardhan, Gaurav; Jena, Chinmay; Yadav, Prafull; Kulkarni, Santosh; Debnath, Sreyashi; Pawar, Pooja V; Khare, Manoj; Kaginalkar, Akshara; Kumar, Rajesh; Wagh, Sandeep; Chate, Dilip; Ghude, Sachin D.
Affiliation
  • Gunwani P; Indian Institute of Tropical Meteorology (IITM), Ministry of Earth Sciences, Pune, India. preeti.gunwani@tropmet.res.in.
  • Govardhan G; Meteorological Centre Ranchi, India Meteorological Department, Ministry of Earth Sciences, Ranchi, India. preeti.gunwani@tropmet.res.in.
  • Jena C; Indian Institute of Tropical Meteorology (IITM), Ministry of Earth Sciences, Pune, India. gaurav.govardhan@tropmet.res.in.
  • Yadav P; National Centre for Medium-Range Weather Forecasting, Ministry of Earth Sciences, Noida, India. gaurav.govardhan@tropmet.res.in.
  • Kulkarni S; India Meteorological Department, Ministry of Earth Sciences, Delhi, India.
  • Debnath S; Indian Institute of Tropical Meteorology (IITM), Ministry of Earth Sciences, Pune, India.
  • Pawar PV; Department of Atmospheric and Space Sciences, Savitribai Phule Pune University, Pune, India.
  • Khare M; Computational Earth Science Group, Centre for Development of Advanced Computing, Pune, India.
  • Kaginalkar A; Indian Institute of Tropical Meteorology (IITM), Ministry of Earth Sciences, Pune, India.
  • Kumar R; Department of Atmospheric and Space Sciences, Savitribai Phule Pune University, Pune, India.
  • Wagh S; Indian Institute of Tropical Meteorology (IITM), Ministry of Earth Sciences, Pune, India.
  • Chate D; Department of Chemical Technology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India.
  • Ghude SD; Computational Earth Science Group, Centre for Development of Advanced Computing, Pune, India.
Environ Monit Assess ; 195(5): 560, 2023 Apr 13.
Article de En | MEDLINE | ID: mdl-37052717
ABSTRACT
The ability of a chemical transport model to simulate accurate meteorological and chemical processes depends upon the physical parametrizations and quality of meteorological input data such as initial/boundary conditions. In this study, weather research and forecasting model coupled with chemistry (WRF-Chem) is used to test the sensitivity of PM2.5 predictions to planetary boundary layer (PBL) parameterization schemes (YSU, MYJ, MYNN, ACM2, and Boulac) and meteorological initial/boundary conditions (FNL, ERA-Interim, GDAS, and NCMRWF) over Indo-Gangetic Plain (Delhi, Punjab, Haryana, Uttar Pradesh, and Rajasthan) during the winter period (December 2017 to January 2018). The aim is to select the model configuration for simulating PM2.5 which shows the lowest errors and best agreement with the observed data. The best results were achieved with initial/boundary conditions from ERA and GDAS datasets and local PBL parameterization (MYJ and MYNN). It was also found that PM2.5 concentrations are relatively less sensitive to changes in initial/boundary conditions but in contrast show a stronger sensitivity to changes in the PBL scheme. Moreover, the sensitivity of the simulated PM2.5 to the choice of PBL scheme is more during the polluted hours of the day (evening to early morning), while that to the choice of the meteorological input data is more uniform and subdued over the day. This work indicates the optimal model setup in terms of choice of initial/boundary conditions datasets and PBL parameterization schemes for future air quality simulations. It also highlights the importance of the choice of PBL scheme over the choice of meteorological data set to the simulated PM2.5 by a chemical transport model.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Polluants atmosphériques / Pollution de l'air Type d'étude: Diagnostic_studies / Prognostic_studies Pays/Région comme sujet: Asia Langue: En Journal: Environ Monit Assess Sujet du journal: SAUDE AMBIENTAL Année: 2023 Type de document: Article Pays d'affiliation: Inde

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Polluants atmosphériques / Pollution de l'air Type d'étude: Diagnostic_studies / Prognostic_studies Pays/Région comme sujet: Asia Langue: En Journal: Environ Monit Assess Sujet du journal: SAUDE AMBIENTAL Année: 2023 Type de document: Article Pays d'affiliation: Inde