Your browser doesn't support javascript.
loading
Transport Layer Engineering Toward Lower Threshold for Perovskite Lasers.
Zhang, Jia; Qin, Jiajun; Cai, Weidong; Tang, Yipeng; Zhang, Huotian; Wang, Tong; Bakulin, Artem; Hu, Bin; Liu, Xiao-Ke; Gao, Feng.
Affiliation
  • Zhang J; Department of Physics, Chemistry and Biology, Linköping University, Linköping, 58183, Sweden.
  • Qin J; Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee, 37996, USA.
  • Cai W; Department of Physics, Chemistry and Biology, Linköping University, Linköping, 58183, Sweden.
  • Tang Y; Department of Physics, Chemistry and Biology, Linköping University, Linköping, 58183, Sweden.
  • Zhang H; Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee, 37996, USA.
  • Wang T; Department of Physics, Chemistry and Biology, Linköping University, Linköping, 58183, Sweden.
  • Bakulin A; Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
  • Hu B; Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
  • Liu XK; Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
  • Gao F; Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee, 37996, USA.
Adv Mater ; 35(30): e2300922, 2023 Jul.
Article de En | MEDLINE | ID: mdl-37086205
ABSTRACT
Charge-transport layers are essential for achieving electrically pumped perovskite lasers. However, their role in perovskite lasing is not fully understood. Here, the role of charge-transport layers on the lasing actions of perovskite films is explored by investigating the amplified spontaneous emission (ASE) thresholds. A largely reduced ASE threshold and enhanced ASE intensity is demonstrated by introducing an additional hole transport layer poly(triaryl amine) (PTAA). It is shown that the key role of the PTAA layer is to accelerate the hot-carrier cooling process by extracting holes in perovskites. With reduced hot holes, the Auger recombination loss is largely suppressed, resulting in decreased ASE threshold. This argument is further supported by the fact that the ASE threshold can be further reduced from 25.7 to 7.2 µJ cm-2 upon switching the pumping wavelength from 400 to 500 nm to directly avoid excess hot-hole generation. This work exemplifies how to further reduce the ASE threshold with transport layer engineering through hot-hole manipulation. This is critical to maintaining the excellent gain properties of perovskites when integrating them into electrical devices, paving the way for electrically pumped perovskite lasers.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Adv Mater Sujet du journal: BIOFISICA / QUIMICA Année: 2023 Type de document: Article Pays d'affiliation: Suède

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Adv Mater Sujet du journal: BIOFISICA / QUIMICA Année: 2023 Type de document: Article Pays d'affiliation: Suède
...