Your browser doesn't support javascript.
loading
Cycles of satellite and transposon evolution in Arabidopsis centromeres.
Wlodzimierz, Piotr; Rabanal, Fernando A; Burns, Robin; Naish, Matthew; Primetis, Elias; Scott, Alison; Mandáková, Terezie; Gorringe, Nicola; Tock, Andrew J; Holland, Daniel; Fritschi, Katrin; Habring, Anette; Lanz, Christa; Patel, Christie; Schlegel, Theresa; Collenberg, Maximilian; Mielke, Miriam; Nordborg, Magnus; Roux, Fabrice; Shirsekar, Gautam; Alonso-Blanco, Carlos; Lysak, Martin A; Novikova, Polina Y; Bousios, Alexandros; Weigel, Detlef; Henderson, Ian R.
Affiliation
  • Wlodzimierz P; Department of Plant Sciences, University of Cambridge, Cambridge, UK.
  • Rabanal FA; Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
  • Burns R; Department of Plant Sciences, University of Cambridge, Cambridge, UK.
  • Naish M; Department of Plant Sciences, University of Cambridge, Cambridge, UK.
  • Primetis E; School of Life Sciences, University of Sussex, Brighton, UK.
  • Scott A; Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
  • Mandáková T; Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
  • Gorringe N; Department of Plant Sciences, University of Cambridge, Cambridge, UK.
  • Tock AJ; Department of Plant Sciences, University of Cambridge, Cambridge, UK.
  • Holland D; Department of Plant Sciences, University of Cambridge, Cambridge, UK.
  • Fritschi K; Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
  • Habring A; Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
  • Lanz C; Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
  • Patel C; Department of Plant Sciences, University of Cambridge, Cambridge, UK.
  • Schlegel T; Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
  • Collenberg M; Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
  • Mielke M; Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
  • Nordborg M; Gregor Mendel Institute, Vienna, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
  • Roux F; LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.
  • Shirsekar G; Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
  • Alonso-Blanco C; Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
  • Lysak MA; Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
  • Novikova PY; Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
  • Bousios A; School of Life Sciences, University of Sussex, Brighton, UK. alex.bousios@sussex.ac.uk.
  • Weigel D; Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany. weigel@tue.mpg.de.
  • Henderson IR; Department of Plant Sciences, University of Cambridge, Cambridge, UK. irh25@cam.ac.uk.
Nature ; 618(7965): 557-565, 2023 Jun.
Article de En | MEDLINE | ID: mdl-37198485
ABSTRACT
Centromeres are critical for cell division, loading CENH3 or CENPA histone variant nucleosomes, directing kinetochore formation and allowing chromosome segregation1,2. Despite their conserved function, centromere size and structure are diverse across species. To understand this centromere paradox3,4, it is necessary to know how centromeric diversity is generated and whether it reflects ancient trans-species variation or, instead, rapid post-speciation divergence. To address these questions, we assembled 346 centromeres from 66 Arabidopsis thaliana and 2 Arabidopsis lyrata accessions, which exhibited a remarkable degree of intra- and inter-species diversity. A. thaliana centromere repeat arrays are embedded in linkage blocks, despite ongoing internal satellite turnover, consistent with roles for unidirectional gene conversion or unequal crossover between sister chromatids in sequence diversification. Additionally, centrophilic ATHILA transposons have recently invaded the satellite arrays. To counter ATHILA invasion, chromosome-specific bursts of satellite homogenization generate higher-order repeats and purge transposons, in line with cycles of repeat evolution. Centromeric sequence changes are even more extreme in comparison between A. thaliana and A. lyrata. Together, our findings identify rapid cycles of transposon invasion and purging through satellite homogenization, which drive centromere evolution and ultimately contribute to speciation.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: ADN satellite / Éléments transposables d'ADN / Centromère / Arabidopsis / Évolution moléculaire Type d'étude: Prognostic_studies Langue: En Journal: Nature Année: 2023 Type de document: Article Pays d'affiliation: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: ADN satellite / Éléments transposables d'ADN / Centromère / Arabidopsis / Évolution moléculaire Type d'étude: Prognostic_studies Langue: En Journal: Nature Année: 2023 Type de document: Article Pays d'affiliation: Royaume-Uni