Your browser doesn't support javascript.
loading
Bi nanoparticles modified the WO3/ZnWO4 heterojunction for photoelectrochemical water splitting.
Bai, Shouli; Fang, Yanling; Zhao, Yingying; Feng, Yongjun; Luo, Ruixian; Li, Dianqing; Chen, Aifan.
Affiliation
  • Bai S; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address: Baisl@mail.buct.edu.cn.
  • Fang Y; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
  • Zhao Y; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
  • Feng Y; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
  • Luo R; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
  • Li D; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
  • Chen A; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
J Colloid Interface Sci ; 646: 745-752, 2023 Sep 15.
Article de En | MEDLINE | ID: mdl-37229992
ABSTRACT
The novel ternary photoanode was successfully prepared by Bi nanoparticles (Bi NPs) modified on type II heterojunction of WO3-ZnWO4 using the simple and effective drop casting and chemical impregnation methods. The photoelectrochemical (PEC) experimental tests revealed that the photocurrent density of the ternary photoanode of WO3/ZnWO4(2)/Bi NPs reaches 3.0 mA/cm2 at 1.23 V (vs. RHE), which is 6 times of the WO3 photoanode. The incident photon-to-electron conversion efficiency (IPCE) at 380 nm wave length reaches 68%, which increases 2.8 times compared to WO3 photoanode. The observed enhancement can be attributed to the formation of type II heterojunction and modification of Bi NPs. The former broadens the absorption range for visible light and improves the carrier separation efficiency, while the latter enhances the light capture ability through the local surface plasmon resonance (LSPR) effect of Bi NPs and the generation of hot electrons.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: J Colloid Interface Sci Année: 2023 Type de document: Article Pays de publication: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: J Colloid Interface Sci Année: 2023 Type de document: Article Pays de publication: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA