Your browser doesn't support javascript.
loading
A novel Cry1A resistance allele of fall armyworm in the new invaded region.
Jin, Minghui; Shan, Yinxue; Li, Qi; Peng, Yan; Xiao, Yutao.
Affiliation
  • Jin M; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Shan Y; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Li Q; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Peng Y; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Xiao Y; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China. Electronic address: xiaoyutao@
Int J Biol Macromol ; 244: 125392, 2023 Jul 31.
Article de En | MEDLINE | ID: mdl-37321433
The fall armyworm, Spodoptera frugiperda, is a devastating pest in its native range Western Hemisphere and has become a major invasive pest around the globe. Transgenic crops producing Bt toxins have been widely used to control S. frugiperda. However, the evolution of resistance threatens the sustainability of Bt crops. Field-evolved S. frugiperda resistance to Bt crops was observed in America, whereas, no case of field-resistance was reported in its newly invaded East Hemisphere. Here we investigated the molecular mechanism of a Cry1Ab-resistant LZ-R strain of S. frugiperda, which selected 27-generations using Cry1Ab after being collected in corn fields from China. Complementation tests between LZ-R strain and SfABCC2-KO strain, which have been knockout SfABCC2 gene and confer 174-fold resistance to Cry1Ab, showed a similar level of resistance in the F1-progeny as their parent stains, indicating that a common locus of SfABCC2 mutation in LZ-R stain. Sequencing of the full length of SfABCC2 cDNA from LZ-R strain, we characterize a novel mutation allele of SfABCC2. Cross-resistance results showed that Cry1Ab-resistance strain also confers >260-fold resistance to Cry1F, with no cross-resistance to Vip3A. These results provided evidence of a novel SfABCC2 mutation allele in the newly invaded East Hemisphere of S. frugiperda.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Bacillus thuringiensis / Endotoxines Limites: Animals Langue: En Journal: Int J Biol Macromol Année: 2023 Type de document: Article Pays d'affiliation: Chine Pays de publication: Pays-Bas

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Bacillus thuringiensis / Endotoxines Limites: Animals Langue: En Journal: Int J Biol Macromol Année: 2023 Type de document: Article Pays d'affiliation: Chine Pays de publication: Pays-Bas