Your browser doesn't support javascript.
loading
Learning structural heterogeneity from cryo-electron sub-tomograms with tomoDRGN.
Powell, Barrett M; Davis, Joseph H.
Affiliation
  • Powell BM; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Davis JH; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139.
bioRxiv ; 2023 Jun 02.
Article de En | MEDLINE | ID: mdl-37398315
ABSTRACT
Cryo-electron tomography (cryo-ET) allows one to observe macromolecular complexes in their native, spatially contextualized environment. Tools to visualize such complexes at nanometer resolution via iterative alignment and averaging are well-developed but rely on assumptions of structural homogeneity among the complexes under consideration. Recently developed downstream analysis tools allow for some assessment of macromolecular diversity but have limited capacity to represent highly heterogeneous macromolecules, including those undergoing continuous conformational changes. Here, we extend the highly expressive cryoDRGN deep learning architecture, originally created for cryo-electron microscopy single particle analysis, to sub-tomograms. Our new tool, tomoDRGN, learns a continuous low-dimensional representation of structural heterogeneity in cryo-ET datasets while also learning to reconstruct a large, heterogeneous ensemble of structures supported by the underlying data. Using simulated and experimental data, we describe and benchmark architectural choices within tomoDRGN that are uniquely necessitated and enabled by cryo-ET data. We additionally illustrate tomoDRGN's efficacy in analyzing an exemplar dataset, using it to reveal extensive structural heterogeneity among ribosomes imaged in situ.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: BioRxiv Année: 2023 Type de document: Article

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: BioRxiv Année: 2023 Type de document: Article