Your browser doesn't support javascript.
loading
AIEgen-Based Covalent Organic Frameworks for Preventing Malignant Ventricular Arrhythmias Via Local Hyperthermia Therapy.
Zhang, Liang; Guo, Fuding; Xu, Saiting; Deng, Qiang; Xie, Mengjie; Sun, Jianwei; Kwok, Ryan T K; Lam, Jacky W Y; Deng, Hexiang; Jiang, Hong; Yu, Lilei; Tang, Ben Zhong.
Affiliation
  • Zhang L; Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
  • Guo F; Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Cardiac Autonomic
  • Xu S; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Luojiashan, Wuhan, 430072, China.
  • Deng Q; Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Cardiac Autonomic
  • Xie M; Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Cardiac Autonomic
  • Sun J; Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Cardiac Autonomic
  • Kwok RTK; Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Cardiac Autonomic
  • Lam JWY; Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
  • Deng H; Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
  • Jiang H; Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
  • Yu L; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Luojiashan, Wuhan, 430072, China.
  • Tang BZ; Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Cardiac Autonomic
Adv Mater ; : e2304620, 2023 Aug 02.
Article de En | MEDLINE | ID: mdl-37532257
ABSTRACT
The engineering of aggregation-induced emission luminogens (AIEgen) based covalent organic frameworks (COFs), TDTA-COF, BTDTA-COF, and BTDBETA-COF are reported, as hyperthermia agents for inhibiting the occurrence of malignant ventricular arrhythmias (VAs). These AIE COFs exhibit dual functionality, as they not only directly modulate the function and neural activity of stellate ganglion (SG) through local hyperthermia therapy (LHT) but also induce the browning of white fat and improve the neuroinflammation peri-SG microenvironment, which is favorable for inhibiting ischemia-induced VAs. In vivo studies have confirmed that BTDBETA-COF-mediated LHT enhances thermogenesis and browning-related gene expression, thereby serving a synergistic role in combating VAs. Transcriptome analysis of peri-SG adipose tissue reveals a substantial downregulation of inflammatory cytokines, highlighting the potency of BTDBETA-COF-mediated LHT in ameliorating the neuroinflammation peri-SG microenvironment and offering myocardial and arrhythmia protection. The work on AIE COF-based hyperthermia agent for VAs inhibition provides a new avenue for mitigating cardiac sympathetic nerve hyperactivity.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Adv Mater Sujet du journal: BIOFISICA / QUIMICA Année: 2023 Type de document: Article Pays d'affiliation: Chine

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Adv Mater Sujet du journal: BIOFISICA / QUIMICA Année: 2023 Type de document: Article Pays d'affiliation: Chine
...