Your browser doesn't support javascript.
loading
Optimising Surface Roughness and Density in Titanium Fabrication via Laser Powder Bed Fusion.
Hassanin, Hany; El-Sayed, Mahmoud Ahmed; Ahmadein, Mahmoud; Alsaleh, Naser A; Ataya, Sabbah; Ahmed, Mohamed M Z; Essa, Khamis.
Affiliation
  • Hassanin H; School of Engineering, Technology, and Design, Canterbury Christ Church University, Canterbury CT1 1QU, UK.
  • El-Sayed MA; Department of Industrial and Management Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria 21599, Egypt.
  • Ahmadein M; Department of Production Engineering and Mechanical Design, Tanta University, Tanta 31512, Egypt.
  • Alsaleh NA; Department of Mechanical Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia.
  • Ataya S; Department of Mechanical Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia.
  • Ahmed MMZ; Mechanical Engineering Department, College of Engineering at Al Kharj, Prince Sattam Bin Abdulaziz University, Al Kharj 16273, Saudi Arabia.
  • Essa K; School of Engineering, University of Birmingham, Birmingham B15 2TT, UK.
Micromachines (Basel) ; 14(8)2023 Aug 20.
Article de En | MEDLINE | ID: mdl-37630178
ABSTRACT
The Ti6Al4V alloy has many advantages, such as being lightweight, formal, and resistant to corrosion. This makes it highly desirable for various applications, especially in the aerospace industry. Laser Powder Bed Fusion (LPBF) is a technique that allows for the production of detailed and unique parts with great flexibility in design. However, there are challenges when it comes to achieving high-quality surfaces and porosity formation in the material, which limits the wider use of LPBF. To tackle these challenges, this study uses statistical techniques called Design of Experiments (DoE) and Analysis of Variance (ANOVA) to investigate and optimise the process parameters of LPBF for making Ti6Al4V components with improved density and surface finish. The parameters examined in this study are laser power, laser scan speed, and hatch space. The optimisation study results show that using specific laser settings, like a laser power of 175 W, a laser scan speed of 1914 mm/s, and a hatch space of 53 µm, produces Ti6Al4V parts with a high relative density of 99.54% and low top and side surface roughness of 2.6 µm and 4.3 µm, respectively. This promising outcome demonstrates the practicality of optimising Ti6Al4V and other metal materials for a wide range of applications, thereby overcoming existing limitations and further expanding the potential of LPBF while minimising inherent process issues.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Micromachines (Basel) Année: 2023 Type de document: Article Pays d'affiliation: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Micromachines (Basel) Année: 2023 Type de document: Article Pays d'affiliation: Royaume-Uni