A Molecular Dynamics Simulation Study on Enhancement of Mechanical and Tribological Properties of Nitrile-Butadiene Rubber with Varied Contents of Acrylonitrile.
Polymers (Basel)
; 15(18)2023 Sep 18.
Article
de En
| MEDLINE
| ID: mdl-37765653
The molecular models of nitrile-butadiene rubber (NBR) with varied contents of acrylonitrile (ACN) were developed and investigated to provide an understanding of the enhancement mechanisms of ACN. The investigation was conducted using molecular dynamics (MD) simulations to calculate and predict the mechanical and tribological properties of NBR through the constant strain method and the shearing model. The MD simulation results showed that the mechanical properties of NBR showed an increasing trend until the content of ACN reached 40%. The mechanism to enhance the strength of the rubber by ACN was investigated and analyzed by assessing the binding energy, radius of gyration, mean square displacement, and free volume. The abrasion rate (AR) of NBR was calculated using Fe-NBR-Fe models during the friction processes. The wear results of atomistic simulations indicated that the NBR with 40% ACN content had the best tribological properties due to the synergy among appropriate polarity, rigidity, and chain length of the NBR molecules. In addition, the random forest regression model of predicted AR, based on the dataset of feature parameters extracted by the MD models, was developed to obtain the variable importance for identifying the highly correlated parameters of AR. The torsion-bend-bend energy was obtained and used to successfully predict the AR trend on the new NBR models with other acrylonitrile contents.
Texte intégral:
1
Collection:
01-internacional
Base de données:
MEDLINE
Type d'étude:
Prognostic_studies
Langue:
En
Journal:
Polymers (Basel)
Année:
2023
Type de document:
Article
Pays d'affiliation:
Chine
Pays de publication:
Suisse