Your browser doesn't support javascript.
loading
Concave Structural Carbon Co-Doped with Iron Atom Pairs and Nitrogen as Ultra-High Performance Catalyst Toward Oxygen Reduction.
Shi, Xiudong; Pu, Zonghua; Chi, Bin; Yu, Siyan; Hu, Jingsong; Sun, Shuhui; Liao, Shijun.
Affiliation
  • Shi X; The Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China.
  • Pu Z; The Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China.
  • Chi B; Centre Énergie, Matériaux et Télécommunications, Institute National de la Recherche Scientifique, Varennes, Québec, J3X1P7, Canada.
  • Yu S; The Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China.
  • Hu J; The Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China.
  • Sun S; CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.
  • Liao S; Centre Énergie, Matériaux et Télécommunications, Institute National de la Recherche Scientifique, Varennes, Québec, J3X1P7, Canada.
Small ; 20(12): e2307011, 2024 Mar.
Article de En | MEDLINE | ID: mdl-37946683
It is crucial to rationally design and synthesize atomic-scale transition metal-doped carbon catalysts with high electrocatalytic activity to achieve a high-efficient oxygen reduction reaction (ORR). Herein, an electrocatalyst comprised of Fe-Fe dual atom pairs and N-doped concave carbon are reported (N-CC@Fe DA) that achieves ultrahigh electrocatalytic ORR activity. The catalyst is prepared by a gaseous doping approach, with zeolitic imidazolate framework-8 (ZIF-8) as the carbon framework precursor and cyclopentadienyliron dicarbonyl dimer as the Fe-Fe atom pair precursor. The catalyst exhibits high cathodic ORR catalytic performance in an alkaline Zn/air battery and proton exchange membrane fuel cell (PEMFC), yielding peak power densities of 241 mW cm-2 and 724 mW cm-2, respectively, compared to 127 mW cm-2 and 1.20 W cm-2 with conventional Pt/C catalysts as cathodes. The presence of Fe atom pairs coordinate with N atoms is revealed by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) analysis, and Density Functional Theory (DFT) calculation results show that the Fe-Fe pair structure is beneficial for adsorbing oxygen molecules, activating the O─O bond, and desorbing OH* intermediates formed during oxygen reduction, resulting in a more efficient oxygen reaction. The findings may provide a new pathway for preparing ultra-high-performance doped carbon catalysts with Fe-Fe atom pair structures.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Small Sujet du journal: ENGENHARIA BIOMEDICA Année: 2024 Type de document: Article Pays de publication: Allemagne

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Small Sujet du journal: ENGENHARIA BIOMEDICA Année: 2024 Type de document: Article Pays de publication: Allemagne