Your browser doesn't support javascript.
loading
Nanoparticles Internalization through HIP-55-Dependent Clathrin Endocytosis Pathway.
Guan, Kaihang; Liu, Kai; Jiang, Yunqi; Bian, Jingwei; Gao, Yang; Dong, Erdan; Li, Zijian.
Affiliation
  • Guan K; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and
  • Liu K; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and
  • Jiang Y; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and
  • Bian J; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and
  • Gao Y; Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
  • Dong E; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and
  • Li Z; Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
Nano Lett ; 23(24): 11477-11484, 2023 Dec 27.
Article de En | MEDLINE | ID: mdl-38084909
ABSTRACT
Nanoparticles are promising tools for biomedicine. Many nanoparticles are internalized to function. Clathrin-mediated endocytosis is one of the most important mechanisms for nanoparticle internalization. However, the regulatory mechanism of clathrin-mediated nanoparticle endocytosis is still unclear. Here, we report that the adapter protein HIP-55 regulates clathrin-mediated nanoparticle endocytosis. CdSe/ZnS quantum dots (QDs), a typical nanoparticle, enter cells through the HIP-55-dependent clathrin endocytosis pathway. Both pharmacological inhibitor and genetic intervention demonstrate that QDs enter cells through clathrin-mediated endocytosis. HIP-55 can interact with clathrin and promote clathrin-mediated QDs endocytosis. Furthermore, HIP-55 ΔADF which is defective in F-actin binding fails to promote QDs endocytosis, indicating HIP-55 promotes clathrin-mediated QDs endocytosis depending on interaction with F-actin. In vivo, HIP-55 knockout also inhibits endocytosis of QDs. These findings reveal that HIP-55 acts as an intrinsic regulator for clathrin-mediated nanoparticle endocytosis, providing new insight into the nanoparticle internalization and a new strategy for nanodrug enrichment in target cells.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Boîtes quantiques / Nanoparticules Langue: En Journal: Nano Lett Année: 2023 Type de document: Article

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Boîtes quantiques / Nanoparticules Langue: En Journal: Nano Lett Année: 2023 Type de document: Article
...