Your browser doesn't support javascript.
loading
Ultrasound-Stimulated "Exocytosis" by Cell-Like Microbubbles Enhances Antibacterial Species Penetration and Immune Activation Against Implant Infection.
Xiu, Weijun; Li, Xiaoye; Li, Qiang; Ding, Meng; Zhang, Yu; Wan, Ling; Wang, Siyu; Gao, Yu; Mou, Yongbin; Wang, Lianhui; Dong, Heng.
Affiliation
  • Xiu W; Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, P. R. China.
  • Li X; Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. Ch
  • Li Q; Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, P. R. China.
  • Ding M; Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, P. R. China.
  • Zhang Y; Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, P. R. China.
  • Wan L; Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, P. R. China.
  • Wang S; Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. Ch
  • Gao Y; Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. Ch
  • Mou Y; Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. Ch
  • Wang L; Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, P. R. China.
  • Dong H; Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. Ch
Adv Sci (Weinh) ; 11(10): e2307048, 2024 Mar.
Article de En | MEDLINE | ID: mdl-38109089
ABSTRACT
Host immune systems serving as crucial defense lines are vital resisting mechanisms against biofilm-associated implant infections. Nevertheless, biofilms hinder the penetration of anti-bacterial species, inhibit phagocytosis of immune cells, and frustrate host inflammatory responses, ultimately resulting in the weakness of the host immune system for biofilm elimination. Herein, a cell-like construct is developed through encapsulation of erythrocyte membrane fragments on the surface of Fe3 O4 nanoparticle-fabricated microbubbles and then loaded with hydroxyurea (EMB-Hu). Under ultrasound (US) stimulation, EMB-Hu undergoes a stable oscillation manner to act in an "exocytosis" mechanism for disrupting biofilm, releasing agents, and enhancing penetration of catalytically generated anti-bacterial species within biofilms. Additionally, the US-stimulated "exocytosis" by EMB-Hu can activate pro-inflammatory macrophage polarization and enhance macrophage phagocytosis for clearance of disrupted biofilms. Collectively, this work has exhibited cell-like microbubbles with US-stimulated "exocytosis" mechanisms to overcome the biofilm barrier and signal macrophages for inflammatory activation, finally achieving favorable therapeutic effects against implant infections caused by methicillin-resistant Staphylococcus aureus (MRSA) biofilms.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Staphylococcus aureus résistant à la méticilline Limites: Humans Langue: En Journal: Adv Sci (Weinh) Année: 2024 Type de document: Article

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Staphylococcus aureus résistant à la méticilline Limites: Humans Langue: En Journal: Adv Sci (Weinh) Année: 2024 Type de document: Article