Your browser doesn't support javascript.
loading
Applications of Advanced Natural Language Processing for Clinical Pharmacology.
Hsu, Joy C; Wu, Michael; Kim, Chloe; Vora, Bianca; Lien, Yi Ting Kayla; Jindal, Ashutosh; Yoshida, Kenta; Kawakatsu, Sonoko; Gore, Jeremy; Jin, Jin Y; Lu, Christina; Chen, Bingyuan; Wu, Benjamin.
Affiliation
  • Hsu JC; Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA.
  • Wu M; Computational Sciences, Genentech, Inc., South San Francisco, California, USA.
  • Kim C; Computational Sciences, Genentech, Inc., South San Francisco, California, USA.
  • Vora B; Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA.
  • Lien YTK; Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA.
  • Jindal A; Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA.
  • Yoshida K; Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA.
  • Kawakatsu S; Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA.
  • Gore J; A2-Ai, Ann Arbor, Michigan, USA.
  • Jin JY; Capgemini America, Inc., New York, New York, USA.
  • Lu C; Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA.
  • Chen B; Computational Sciences, Genentech, Inc., South San Francisco, California, USA.
  • Wu B; Computational Sciences, Genentech, Inc., South San Francisco, California, USA.
Clin Pharmacol Ther ; 115(4): 786-794, 2024 04.
Article de En | MEDLINE | ID: mdl-38140747
ABSTRACT
Natural language processing (NLP) is a branch of artificial intelligence, which combines computational linguistics, machine learning, and deep learning models to process human language. Although there is a surge in NLP usage across various industries in recent years, NLP has not been widely evaluated and utilized to support drug development. To demonstrate how advanced NLP can expedite the extraction and analyses of information to help address clinical pharmacology questions, inform clinical trial designs, and support drug development, three use cases are described in this article (1) dose optimization strategy in oncology, (2) common covariates on pharmacokinetic (PK) parameters in oncology, and (3) physiologically-based PK (PBPK) analyses for regulatory review and product label. The NLP workflow includes (1) preparation of source files, (2) NLP model building, and (3) automation of data extraction. The Clinical Pharmacology and Biopharmaceutics Summary Basis of Approval (SBA) documents, US package inserts (USPI), and approval letters from the US Food and Drug Administration (FDA) were used as our source data. As demonstrated in the three example use cases, advanced NLP can expedite the extraction and analyses of large amounts of information from regulatory review documents to help address important clinical pharmacology questions. Although this has not been adopted widely, integrating advanced NLP into the clinical pharmacology workflow can increase efficiency in extracting impactful information to advance drug development.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Pharmacologie clinique / Traitement du langage naturel Limites: Humans Langue: En Journal: Clin Pharmacol Ther Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Pharmacologie clinique / Traitement du langage naturel Limites: Humans Langue: En Journal: Clin Pharmacol Ther Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: États-Unis d'Amérique