Source identification of sedimentary organic carbon in coastal wetlands of the western Bohai Sea.
Sci Total Environ
; 913: 169282, 2024 Feb 25.
Article
de En
| MEDLINE
| ID: mdl-38141989
ABSTRACT
Coastal wetlands play a vital role in mitigating climate change, yet the characteristics of buried organic carbon (OC) and carbon cycling are limited due to difficulties in assessing the composition of OC from different sources (allochthonous vs. autochthonous). In this study, we analyzed the total organic carbon (TOC) to total nitrogen (TN) ratio (C/N), stable carbon isotope (δ13C) composition, and n-alkane content to distinguish different sources of OC in the surface sediments of the coastal wetlands on the western coast of the Bohai Sea. The coupling of the C/N ratio with δ13C and n-alkane biomarkers has been proved to be an effective tool for revealing OC sources. The three end-member Bayesian mixing model based on coupling C/N ratios with δ13C showed that the sedimentary OC was dominated by the contribution of terrestrial particulate organic matter (POM), followed by freshwater algae and marine phytoplankton, with relative contributions of 47 ± 21 %, 41 ± 18 % and 12 ± 17 %, respectively. The relative contributions of terrestrial plants, aquatic macrophytes and marine phytoplankton assessed by n-alkanes were 56 ± 8 %, 35 ± 9 % and 9 ± 5 % in the study area, respectively. The relatively high salinity levels and strong hydrodynamic conditions of the Beidagang Reservoir led to higher terrestrial plants source and lower aquatic macrophytes source than these of Qilihai Reservoir based on the assessment of n-alkanes. Both methods showed that sedimentary OC was mainly derived from terrestrial sources (plant-dominated), suggesting that vegetation plays a crucial role in storing carbon in coastal wetlands, thus, the coastal vegetation management needs to be strengthened in the future. Our findings provide insights into the origins and dynamics of OC in coastal wetlands on the western coast of the Bohai Sea and a significant scientific basis for future monitoring of the blue carbon budget balance in coastal wetlands.
Texte intégral:
1
Collection:
01-internacional
Base de données:
MEDLINE
Langue:
En
Journal:
Sci Total Environ
Année:
2024
Type de document:
Article
Pays d'affiliation:
Chine
Pays de publication:
Pays-Bas