Your browser doesn't support javascript.
loading
Coastal degradation regulates the availability and diffusion kinetics of phosphorus at the sediment-water interface: Mechanisms and environmental implications.
Hu, Minjie; Yan, Ruibing; Ni, Ranxu; Wu, Hui.
Affiliation
  • Hu M; Key Laboratory of Humid Sub-tropical Eco-geographical Processes of Ministry of Education, Fujian Normal University, Fuzhou 350117, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Wetland Ecosystem Research Station of Minjiang Estuary, National Forestry and Gra
  • Yan R; School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China.
  • Ni R; School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China.
  • Wu H; School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China.
Water Res ; 250: 121086, 2024 Feb 15.
Article de En | MEDLINE | ID: mdl-38171179
ABSTRACT
Coastal wetlands have experienced considerable loss and degradation globally. However, how coastal degradation regulates sediment phosphorus (P) transformation and its underlying mechanisms remain largely unknown in subtropical coastal ecosystems. This study conducted seasonal field measurements using high-resolution diffusive gradient in thin films (DGT) and dialysis (Peeper) techniques, as well as a DGT-induced fluxes in sediments (DIFS) model, to evaluate the mobilization and diffusion of P along a degradation gradient ranging from pristine wetlands to moderately and severely degraded sites. We observed that sediment P is diminished by coastal degradation, and severely degraded sites exhibit a decline in the concentration of available P, despite the presence of distinct seasonal patterns. High-resolution data based on DGT/Peeper analysis revealed that labile P and soluble reactive P (SRP) concentrations varied from 0.0006 mg L-1 to 0.084 mg L-1 (mean 0.0147 mg L-1) and from 0.0128 mg L-1 to 0.1677 mg L-1 (mean 0.0536 mg L-1), respectively. Coastal degradation had a substantial impact on increasing SRP and labile P concentrations, particularly at severely degraded sites. Although severely degraded wetlands appeared to be P sinks (negative P flux at these sites), we did also observe positive diffusive flux in October, indicating that coastal degradation may accelerate the diffusion and remobilization of sediment P into overlying water. The simulations of the DIFS model provided compelling proof of the high resupply capacity of sediment P at severely degraded sites, as supported by the increased R and k-1 values but decreased Tc values. Taken together, these results suggest coastal degradation reduces the sediment P pool, primarily attributed to the strong remobilization of P from the sediment to porewater and overlying water by enhancing the resupply capability and diffusion kinetics. This acceleration induces nutrient loss which adversely impacts the water quality of the surrounding ecosystem. To reduce the adverse effects of coastal degradation, it is essential to adopt a combination of conservation, restoration, and management efforts designed to mitigate the risk of internal P loading and release, and ultimately maintain a regional nutrient balance.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Polluants chimiques de l'eau / Écosystème Langue: En Journal: Water Res Année: 2024 Type de document: Article Pays de publication: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Polluants chimiques de l'eau / Écosystème Langue: En Journal: Water Res Année: 2024 Type de document: Article Pays de publication: Royaume-Uni