Your browser doesn't support javascript.
loading
Photocatalysis Meets Confinement: An Emerging Opportunity for Photoinduced Organic Transformations.
Hao, Yanke; Lu, Yu-Lin; Jiao, Zhiwei; Su, Cheng-Yong.
Affiliation
  • Hao Y; MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
  • Lu YL; MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
  • Jiao Z; MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
  • Su CY; MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
Angew Chem Int Ed Engl ; 63(15): e202317808, 2024 Apr 08.
Article de En | MEDLINE | ID: mdl-38238997
ABSTRACT
The self-assembled metal-organic cages (MOCs) have been evolved as a paradigm of enzyme-mimic catalysts since they are able to synergize multifunctionalities inherent in metal and organic components and constitute microenvironments characteristic of enzymatic spatial confinement and versatile host-guest interactions, thus facilitating unconventional organic transformations via unique driving-forces such as weak noncovalent binding and electron/energy transfer. Recently, MOC-based photoreactors emerged as a burgeoning platform of supramolecular photocatalysis, displaying anomalous reactivities and selectivities distinct from bulk solution. This perspective recaps two decades journey of the photoinduced radical reactions by using photoactive metal-organic cages (PMOCs) as artificial reactors, outlining how the cage-confined photocatalysis was evolved from stoichiometric photoreactions to photocatalytic turnover, from high-energy UV-irradiation to sustainable visible-light photoactivation, and from simple radical reactions to multi-level chemo- and stereoselectivities. We will focus on PMOCs that merge structural and functional biomimicry into a single-cage to behave as multi-role photoreactors, emphasizing their potentials in tackling current challenges in organic transformations through single-electron transfer (SET) or energy transfer (EnT) pathways in a simple, green while feasible manner.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Angew Chem Int Ed Engl Année: 2024 Type de document: Article Pays d'affiliation: Chine

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Angew Chem Int Ed Engl Année: 2024 Type de document: Article Pays d'affiliation: Chine