Your browser doesn't support javascript.
loading
Non-Noble Metal High-Entropy Alloy-Based Catalytic Electrode for Long-Life Hydrogen Gas Batteries.
Liu, Shuang; Wang, Ying; Jiang, Taoli; Jin, Song; Sajid, Muhammad; Zhang, Zuodong; Xu, Jingwen; Fan, Yanpeng; Wang, Xiaoyang; Chen, Jinghao; Liu, Zaichun; Zheng, Xinhua; Zhang, Kai; Nian, Qingshun; Zhu, Zhengxin; Peng, Qia; Ahmad, Touqeer; Li, Ke; Chen, Wei.
Affiliation
  • Liu S; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Wang Y; College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China.
  • Jiang T; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Jin S; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Sajid M; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Zhang Z; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Xu J; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Fan Y; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Wang X; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Chen J; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Liu Z; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Zheng X; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Zhang K; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Nian Q; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Zhu Z; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Peng Q; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Ahmad T; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Li K; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Chen W; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
ACS Nano ; 18(5): 4229-4240, 2024 Feb 06.
Article de En | MEDLINE | ID: mdl-38277276
ABSTRACT
The development of efficient, stable, and low-cost bifunctional catalysts for the hydrogen evolution/oxidation reaction (HER/HOR) is critical to promote the application of hydrogen gas batteries in large scale energy storage systems. Here we demonstrate a non-noble metal high-entropy alloy grown on Cu foam (NNM-HEA@CF) as a self-supported catalytic electrode for nickel-hydrogen gas (Ni-H2) batteries. Experimental and theoretical calculation results reveal that the NNM-HEA catalyst greatly facilitates the HER/HOR catalytic process through the optimized electronic structures of the active sites. The assembled Ni-H2 battery with NNM-HEA@CF as the anode shows excellent rate capability and exceptional cycling performance of over 1800 h without capacity decay at an areal capacity of 15 mAh cm-2. Furthermore, a scaled-up Ni-H2 battery fabricated with an extended capacity of 0.45 Ah exhibits a high cell-level energy density of ∼109.3 Wh kg-1. Moreover, its estimated cost reaches as low as ∼107.8 $ kWh-1 based on all key components of electrodes, separator and electrolyte, which is reduced by more than 6 times compared to that of the commercial Pt/C-based Ni-H2 battery. This work provides an approach to develop high-efficiency non-noble metal-based bifunctional catalysts for hydrogen batteries in large-scale energy storage applications.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: ACS Nano Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: ACS Nano Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: États-Unis d'Amérique