Your browser doesn't support javascript.
loading
Spatial transcriptomics reveal neuron-astrocyte synergy in long-term memory.
Sun, Wenfei; Liu, Zhihui; Jiang, Xian; Chen, Michelle B; Dong, Hua; Liu, Jonathan; Südhof, Thomas C; Quake, Stephen R.
Affiliation
  • Sun W; Department of Bioengineering, Stanford University, Stanford, CA, USA.
  • Liu Z; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
  • Jiang X; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
  • Chen MB; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
  • Dong H; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
  • Liu J; Department of Bioengineering, Stanford University, Stanford, CA, USA.
  • Südhof TC; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
  • Quake SR; Chan Zuckerberg Initiative, Redwood City, CA, USA.
Nature ; 627(8003): 374-381, 2024 Mar.
Article de En | MEDLINE | ID: mdl-38326616
ABSTRACT
Memory encodes past experiences, thereby enabling future plans. The basolateral amygdala is a centre of salience networks that underlie emotional experiences and thus has a key role in long-term fear memory formation1. Here we used spatial and single-cell transcriptomics to illuminate the cellular and molecular architecture of the role of the basolateral amygdala in long-term memory. We identified transcriptional signatures in subpopulations of neurons and astrocytes that were memory-specific and persisted for weeks. These transcriptional signatures implicate neuropeptide and BDNF signalling, MAPK and CREB activation, ubiquitination pathways, and synaptic connectivity as key components of long-term memory. Notably, upon long-term memory formation, a neuronal subpopulation defined by increased Penk and decreased Tac expression constituted the most prominent component of the memory engram of the basolateral amygdala. These transcriptional changes were observed both with single-cell RNA sequencing and with single-molecule spatial transcriptomics in intact slices, thereby providing a rich spatial map of a memory engram. The spatial data enabled us to determine that this neuronal subpopulation interacts with adjacent astrocytes, and functional experiments show that neurons require interactions with astrocytes to encode long-term memory.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Communication cellulaire / Astrocytes / Analyse de profil d'expression de gènes / Mémoire à long terme / Neurones Langue: En Journal: Nature Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Communication cellulaire / Astrocytes / Analyse de profil d'expression de gènes / Mémoire à long terme / Neurones Langue: En Journal: Nature Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique
...