Your browser doesn't support javascript.
loading
Spatial Patterned Interfacial Solar Evaporators toward Recovering Heat Loss.
Hu, Yingfei; Li, Simin; Zhuang, Wenbo; Tu, Hongyu; Wan, Yanfen; Yang, Peng.
Affiliation
  • Hu Y; National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan Key Laboratory of Electromagnetic Materials and Devices, School of Materials and Energy, Yunnan University, Kunming 650091, China.
  • Li S; National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan Key Laboratory of Electromagnetic Materials and Devices, School of Materials and Energy, Yunnan University, Kunming 650091, China.
  • Zhuang W; National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan Key Laboratory of Electromagnetic Materials and Devices, School of Materials and Energy, Yunnan University, Kunming 650091, China.
  • Tu H; National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan Key Laboratory of Electromagnetic Materials and Devices, School of Materials and Energy, Yunnan University, Kunming 650091, China.
  • Wan Y; National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan Key Laboratory of Electromagnetic Materials and Devices, School of Materials and Energy, Yunnan University, Kunming 650091, China.
  • Yang P; National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan Key Laboratory of Electromagnetic Materials and Devices, School of Materials and Energy, Yunnan University, Kunming 650091, China.
ACS Appl Mater Interfaces ; 16(8): 10285-10294, 2024 Feb 28.
Article de En | MEDLINE | ID: mdl-38377590
ABSTRACT
The novel freshwater production technology, such as interface solar-steam conversion (ISSC) technology, has advanced so rapidly recently, where its energy capture and conversion process was localized at the air-water interface so as to achieve high efficiency of energy utilization and transformation. However, when enlarging the evaporation surface and application scale, the inevitably increased heat loss and reduced conversion efficiency put it in a dilemma should we exploit innovative steamer constructs for practical applications. In order to effectively mitigate heat loss from the evaporator to the surrounding environment, a series of spatial pattern evaporators (SPEs) are specifically designed in this article. By recovering the energy of radiation and convection heat loss, SPEs achieved low heat loss in an open evaporator through unequal height auxiliary heat exchange platforms. In an open environment, it achieves a maximum evaporation rate of 1.68 kg m-2 h-1, with approximately 52.41% of the heat loss being reabsorbed. This sophisticated pattern design provides a promising guideline for optimizing thermal management strategies and promoting practically scalable applications.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: ACS Appl Mater Interfaces Sujet du journal: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Année: 2024 Type de document: Article Pays d'affiliation: Chine

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: ACS Appl Mater Interfaces Sujet du journal: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Année: 2024 Type de document: Article Pays d'affiliation: Chine