Your browser doesn't support javascript.
loading
Quantifying the Light-Absorption Properties and Molecular Composition of Brown Carbon Aerosol from Sub-Saharan African Biomass Combustion.
Moschos, Vaios; Christensen, Cade; Mouton, Megan; Fiddler, Marc N; Isolabella, Tommaso; Mazzei, Federico; Massabò, Dario; Turpin, Barbara J; Bililign, Solomon; Surratt, Jason D.
Affiliation
  • Moschos V; Department of Physics, College of Science and Technology, North Carolina A&T State University, Greensboro, North Carolina 27411, United States.
  • Christensen C; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States.
  • Mouton M; Department of Chemistry, College of Arts and Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
  • Fiddler MN; Department of Applied Sciences and Technology, College of Science and Technology, North Carolina A&T State University, Greensboro, North Carolina 27411, United States.
  • Isolabella T; Department of Chemistry, College of Science and Technology, North Carolina A&T State University, Greensboro, North Carolina 27411, United States.
  • Mazzei F; Department of Physics, University of Genoa, 16146 Genoa, Italy.
  • Massabò D; National Institute of Nuclear Physics (INFN), 16146 Genoa, Italy.
  • Turpin BJ; Department of Physics, University of Genoa, 16146 Genoa, Italy.
  • Bililign S; Department of Physics, University of Genoa, 16146 Genoa, Italy.
  • Surratt JD; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States.
Environ Sci Technol ; 58(9): 4268-4280, 2024 Mar 05.
Article de En | MEDLINE | ID: mdl-38393751
ABSTRACT
Sub-Saharan Africa is a hotspot for biomass burning (BB)-derived carbonaceous aerosols, including light-absorbing organic (brown) carbon (BrC). However, the chemically complex nature of BrC in BB aerosols from this region is not fully understood. We generated smoke in a chamber through smoldering combustion of common sub-Saharan African biomass fuels (hardwoods, cow dung, savanna grass, and leaves). We quantified aethalometer-based, real-time light-absorption properties of BrC-containing organic-rich BB aerosols, accounting for variations in wavelength, fuel type, relative humidity, and photochemical aging conditions. In filter samples collected from the chamber and Botswana in the winter, we identified 182 BrC species, classified into lignin pyrolysis products, nitroaromatics, coumarins, stilbenes, and flavonoids. Using an extensive set of standards, we determined species-specific mass and emission factors. Our analysis revealed a linear relationship between the combined BrC species contribution to chamber-measured BB aerosol mass (0.4-14%) and the mass-absorption cross-section at 370 nm (0.2-2.2 m2 g-1). Hierarchical clustering resolved key molecular-level components from the BrC matrix, with photochemically aged emissions from leaf and cow-dung burning showing BrC fingerprints similar to those found in Botswana aerosols. These quantitative findings could potentially help refine climate model predictions, aid in source apportionment, and inform effective air quality management policies for human health and the global climate.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Polluants atmosphériques / Pollution de l'air Limites: Aged / Humans Langue: En Journal: Environ Sci Technol / Environ. sci. technol / Environmental science & technology Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Polluants atmosphériques / Pollution de l'air Limites: Aged / Humans Langue: En Journal: Environ Sci Technol / Environ. sci. technol / Environmental science & technology Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: États-Unis d'Amérique