Your browser doesn't support javascript.
loading
Synthesis, Structural Characterization, Hirschfeld Surface Analysis, Density Functional Theory, and Photocatalytic CO2 Reduction Activity of a New Ca(II) Complex with a Bis-Schiff Base Ligand.
Tai, Xishi; Yan, Xihai; Wang, Lihua.
Affiliation
  • Tai X; College of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China.
  • Yan X; College of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China.
  • Wang L; College of Biology and Oceanography, Weifang University, Weifang 261061, China.
Molecules ; 29(5)2024 Feb 28.
Article de En | MEDLINE | ID: mdl-38474559
ABSTRACT
A new bis-Schiff base (L) Ca(II) complex, CaL, was synthesized by the reaction of calcium perchlorate tetrahydrate, 1,3-diamino-2-hydroxypropane, and 2-formyl phenoxyacetic acid in an ethanol-water (vv = 21) solution and characterized by IR, UV-vis, TG-DTA, and X-ray single crystal diffraction analysis. The structural analysis indicates that the Ca(II) complex crystallizes in the monoclinic system, space group P121/n1, and the Ca(II) ions are six-coordinated with four O atoms (O8, O9, O11, O12, or O1, O2, O4, O6) and two N atoms (N1, N2, or N3, N4) of one bis-Schiff base ligand. The Ca(II) complex forms a tetramer by intermolecular O-H…O hydrogen bonds. The tetramer units further form a three-dimensional network structure by π-π stacking interactions of benzene rings. The Hirschfeld surface of the Ca(II) complex shows that the H…H contacts represent the largest contribution (41.6%) to the Hirschfeld surface, followed by O…H/H…O and C…H/H…C contacts with contributions of 35.1% and 18.1%, respectively. To understand the electronic structure of the Ca(II) complex, the DFT calculations were carried out. The photocatalytic CO2 reduction test of the Ca(II) complex exhibited a yield of 47.9 µmol/g (CO) and a CO selectivity of 99.3% after six hours.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Molecules / Molecules (Basel) Sujet du journal: BIOLOGIA Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: Suisse

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Molecules / Molecules (Basel) Sujet du journal: BIOLOGIA Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: Suisse