Your browser doesn't support javascript.
loading
Ensemble dynamics and information flow deduction from whole-brain imaging data.
Toyoshima, Yu; Sato, Hirofumi; Nagata, Daiki; Kanamori, Manami; Jang, Moon Sun; Kuze, Koyo; Oe, Suzu; Teramoto, Takayuki; Iwasaki, Yuishi; Yoshida, Ryo; Ishihara, Takeshi; Iino, Yuichi.
Affiliation
  • Toyoshima Y; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
  • Sato H; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
  • Nagata D; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
  • Kanamori M; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
  • Jang MS; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
  • Kuze K; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
  • Oe S; Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan.
  • Teramoto T; Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan.
  • Iwasaki Y; Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, Japan.
  • Yoshida R; The Institute of Statistical Mathematics, Research Organization of Information and Systems, Tachikawa, Tokyo, Japan.
  • Ishihara T; Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan.
  • Iino Y; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
PLoS Comput Biol ; 20(3): e1011848, 2024 Mar.
Article de En | MEDLINE | ID: mdl-38489379
ABSTRACT
The recent advancements in large-scale activity imaging of neuronal ensembles offer valuable opportunities to comprehend the process involved in generating brain activity patterns and understanding how information is transmitted between neurons or neuronal ensembles. However, existing methodologies for extracting the underlying properties that generate overall dynamics are still limited. In this study, we applied previously unexplored methodologies to analyze time-lapse 3D imaging (4D imaging) data of head neurons of the nematode Caenorhabditis elegans. By combining time-delay embedding with the independent component analysis, we successfully decomposed whole-brain activities into a small number of component dynamics. Through the integration of results from multiple samples, we extracted common dynamics from neuronal activities that exhibit apparent divergence across different animals. Notably, while several components show common cooperativity across samples, some component pairs exhibited distinct relationships between individual samples. We further developed time series prediction models of synaptic communications. By combining dimension reduction using the general framework, gradient kernel dimension reduction, and probabilistic modeling, the overall relationships of neural activities were incorporated. By this approach, the stochastic but coordinated dynamics were reproduced in the simulated whole-brain neural network. We found that noise in the nervous system is crucial for generating realistic whole-brain dynamics. Furthermore, by evaluating synaptic interaction properties in the models, strong interactions within the core neural circuit, variable sensory transmission and importance of gap junctions were inferred. Virtual optogenetics can be also performed using the model. These analyses provide a solid foundation for understanding information flow in real neural networks.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Phénomènes physiologiques du système nerveux / Neurones Limites: Animals Langue: En Journal: PLoS Comput Biol Sujet du journal: BIOLOGIA / INFORMATICA MEDICA Année: 2024 Type de document: Article Pays d'affiliation: Japon Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Phénomènes physiologiques du système nerveux / Neurones Limites: Animals Langue: En Journal: PLoS Comput Biol Sujet du journal: BIOLOGIA / INFORMATICA MEDICA Année: 2024 Type de document: Article Pays d'affiliation: Japon Pays de publication: États-Unis d'Amérique