Your browser doesn't support javascript.
loading
The M2 Macrophages Derived Migrasomes From the Surface of Titania Nanotubes Array as a New Concept for Enhancing Osteogenesis.
Li, Guangwen; Zhao, Yuqi; Wang, Haochen; Zhang, Yan; Cai, Dongxuan; Zhang, Yumei; Song, Wen.
Affiliation
  • Li G; State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
  • Zhao Y; Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China.
  • Wang H; State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
  • Zhang Y; State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
  • Cai D; State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
  • Zhang Y; State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
  • Song W; State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
Adv Healthc Mater ; 13(20): e2400257, 2024 Aug.
Article de En | MEDLINE | ID: mdl-38520188
ABSTRACT
As newly discovered substrate anchored extracellular vesicles, migrasomes (Migs) may bring a new opportunity for manipulating target cells bioactivities. In this study, the M2 macrophages derived Migs are obtained by titania nanotubes surface (NTs). Due to the benefits of nanostructuring, the NTs surface is not only able to induce RAW264.7 for M2 polarization but also to generate more Migs formation, which can be internalized by following seeded mesenchymal stem cells (MSCs). Then, the NTs surface induced Migs are collected by density-gradient centrifugation for MSCs treatment. As indicated by immunofluorescence staining, alkaline phosphatase activity, and alizarin red staining, the osteogenic differentiation capacity of MSCs is significantly enhanced by Migs treatment, in line with the dosage. By RNA-sequence analysis, the enhancement of osteogenic differentiation is correlated with PI3K-AKT pathway activation that may originate from the M2 polarization state of donor cells. Finally, the Migs are coated onto Ti surface for therapeutic application. Both the in vitro and in vivo analysis reveal that the Migs coated Ti implant shows significant enhancement of osteogenesis. In conclusion, this study suggests that the nanosurface may be a favorable platform for Migs production, which may bring a new concept for tissue regeneration.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Ostéogenèse / Titane / Différenciation cellulaire / Nanotubes / Cellules souches mésenchymateuses / Macrophages Limites: Animals Langue: En Journal: Adv Healthc Mater Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: Allemagne

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Ostéogenèse / Titane / Différenciation cellulaire / Nanotubes / Cellules souches mésenchymateuses / Macrophages Limites: Animals Langue: En Journal: Adv Healthc Mater Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: Allemagne