Your browser doesn't support javascript.
loading
An enzymatic continuous-flow reactor based on a pore-size matching nano- and isoporous block copolymer membrane.
Zhang, Zhenzhen; Gao, Liang; Boes, Alexander; Bajer, Barbara; Stotz, Johanna; Apitius, Lina; Jakob, Felix; Schneider, Erik S; Sperling, Evgeni; Held, Martin; Emmler, Thomas; Schwaneberg, Ulrich; Abetz, Volker.
Affiliation
  • Zhang Z; Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502, Geesthacht, Germany.
  • Gao L; RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany.
  • Boes A; DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany.
  • Bajer B; Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502, Geesthacht, Germany.
  • Stotz J; RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany.
  • Apitius L; DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany.
  • Jakob F; DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany.
  • Schneider ES; Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502, Geesthacht, Germany.
  • Sperling E; Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502, Geesthacht, Germany.
  • Held M; Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502, Geesthacht, Germany.
  • Emmler T; Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502, Geesthacht, Germany.
  • Schwaneberg U; RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany. u.schwaneberg@biotec.rwth-aachen.de.
  • Abetz V; DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany. u.schwaneberg@biotec.rwth-aachen.de.
Nat Commun ; 15(1): 3308, 2024 Apr 17.
Article de En | MEDLINE | ID: mdl-38632275
ABSTRACT
Continuous-flow biocatalysis utilizing immobilized enzymes emerged as a sustainable route for chemical synthesis. However, inadequate biocatalytic efficiency from current flow reactors, caused by non-productive enzyme immobilization or enzyme-carrier mismatches in size, hampers its widespread application. Here, we demonstrate a general-applicable and robust approach for the fabrication of a high-performance enzymatic continuous-flow reactor via integrating well-designed scalable isoporous block copolymer (BCP) membranes as carriers with an oriented and productive immobilization employing material binding peptides (MBP). Densely packed uniform enzyme-matched nanochannels of well-designed BCP membranes endow the desired nanoconfined environments towards a productive immobilized phytase. Tuning nanochannel properties can further regulate the complex reaction process and fortify the catalytic performance. The synergistic design of enzyme-matched carriers and efficient enzyme immobilization empowers an excellent catalytic performance with >1 month operational stability, superior productivity, and a high space-time yield (1.05 × 105 g L-1 d-1) via a single-pass continuous-flow process. The obtained performance makes the designed nano- and isoporous block copolymer membrane reactor highly attractive for industrial applications.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Bioréacteurs / Enzymes immobilisées Langue: En Journal: Nat Commun Sujet du journal: BIOLOGIA / CIENCIA Année: 2024 Type de document: Article Pays d'affiliation: Allemagne

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Bioréacteurs / Enzymes immobilisées Langue: En Journal: Nat Commun Sujet du journal: BIOLOGIA / CIENCIA Année: 2024 Type de document: Article Pays d'affiliation: Allemagne