Your browser doesn't support javascript.
loading
Listeria-vectored cervical cancer vaccine candidate strains reduce MDSCs via the JAK-STAT signaling pathway.
Zhang, Yunwen; Lei, Yao; Ou, Qian; Chen, Mengdie; Tian, Sicheng; Tang, Jing; Li, Ruidan; Liang, Qian; Chen, Zhaobin; Wang, Chuan.
Affiliation
  • Zhang Y; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
  • Lei Y; Shen Zhen Biomed Alliance Biotech Group Co., Ltd, Shenzhen, China.
  • Ou Q; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
  • Chen M; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
  • Tian S; Shen Zhen Biomed Alliance Biotech Group Co., Ltd, Shenzhen, China.
  • Tang J; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
  • Li R; Shen Zhen Biomed Alliance Biotech Group Co., Ltd, Shenzhen, China.
  • Liang Q; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
  • Chen Z; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
  • Wang C; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
BMC Biol ; 22(1): 88, 2024 Apr 19.
Article de En | MEDLINE | ID: mdl-38641823
ABSTRACT

BACKGROUND:

Immunosuppressive status is prevalent in cancer patients and increases the complexity of tumor immunotherapy. It has been found that Listeria-vectored tumor vaccines had the potential ability of two-side regulatory effect on the immune response during immunotherapy.

RESULTS:

The results show that the combined immunotherapy with the LM∆E6E7 and LI∆E6E7, the two cervical cancer vaccine candidate strains constructed by our lab, improves the antitumor immune response and inhibits the suppressive immune response in tumor-bearing mice in vivo, confirming the two-sided regulatory ability of the immune response caused by Listeria-vectored tumor vaccines. The immunotherapy reduces the expression level of myeloid-derived suppressor cells (MDSCs)-inducing factors and then inhibits the phosphorylation level of STAT3 protein, the regulatory factor of MDSCs differentiation, to reduce the MDSCs formation ability. Moreover, vaccines reduce the expression of functional molecules associated with MDSCs may by inhibiting the phosphorylation level of the JAK1-STAT1 and JAK2-STAT3 pathways in tumor tissues to attenuate the immunosuppressive function of MDSCs.

CONCLUSIONS:

Immunotherapy with Listeria-vectored cervical cancer vaccines significantly reduces the level and function of MDSCs in vivo, which is the key point to the destruction of immunosuppression. The study for the first to elucidate the mechanism of breaking the immunosuppression.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Tumeurs du col de l'utérus / Vaccins anticancéreux / Cellules myéloïdes suppressives Limites: Animals / Female / Humans Langue: En Journal: BMC Biol Sujet du journal: BIOLOGIA Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Tumeurs du col de l'utérus / Vaccins anticancéreux / Cellules myéloïdes suppressives Limites: Animals / Female / Humans Langue: En Journal: BMC Biol Sujet du journal: BIOLOGIA Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: Royaume-Uni