Your browser doesn't support javascript.
loading
Role of Mass Transport in Electrochemical CO2 Reduction to Methanol Using Immobilized Cobalt Phthalocyanine.
Chan, Thomas; Kong, Calton J; King, Alex J; Babbe, Finn; Prabhakar, Rajiv Ramanujam; Kubiak, Clifford P; Ager, Joel W.
Affiliation
  • Chan T; Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Kong CJ; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • King AJ; Liquid Sunlight Alliance, University of California, San Diego, La Jolla, California 92093, United States.
  • Babbe F; Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States.
  • Prabhakar RR; Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States.
  • Kubiak CP; Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Ager JW; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
ACS Appl Energy Mater ; 7(8): 3091-3098, 2024 Apr 22.
Article de En | MEDLINE | ID: mdl-38665895
ABSTRACT
Electrochemical CO2 reduction (CO2R) using heterogenized molecular catalysts usually yields 2-electron reduction products (CO, formate). Recently, it has been reported that certain preparations of immobilized cobalt phthalocyanine (CoPc) produce methanol (MeOH), a 6-electron reduction product. Here, we demonstrate the significant role of intermediate mass transport in CoPc selectivity to methanol. We first developed a simple, physically mixed, polymer (and polyfluoroalkyl, PFAS)-free preparation of CoPc on multiwalled carbon nanotubes (MWCNTs) which can be integrated onto Au electrodes using a poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOTPSS) adhesion layer. After optimization of catalyst preparation and loading, methanol Faradaic efficiencies and partial current densities of 36% (±3%) and 3.8 (±0.5) mA cm-2, respectively, are achieved in the CO2-saturated aqueous electrolyte. The electrolyte flow rate has a large effect. A linear flow velocity of 8.5 cm/min produces the highest MeOH selectivity, with higher flow rates increasing CO selectivity and lower flow rates increasing the hydrogen evolution reaction, suggesting that CO is an unbound intermediate. Using a continuum multiphysics model assuming CO is the intermediate, we show qualitative agreement with the optimal inlet flow rate. Polymer binders were not required to achieve a high Faradaic efficiency for methanol using CoPc and MWCNTs. We also investigated the role of formaldehyde as an intermediate and the role of strain, but definitive conclusions could not be established.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: ACS Appl Energy Mater Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: ACS Appl Energy Mater Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: États-Unis d'Amérique