Your browser doesn't support javascript.
loading
Hierarchical Ti3C2/BiVO4 microcapsules for enhanced solar-driven water evaporation and photocatalytic H2 evolution.
Xiong, Xin; Arshad, Naila; Tao, Junyang; Alwadie, Najah; Liu, Gang; Lin, Liangyou; Yousaf Shah, M A K; Irshad, Muhammad Sultan; Qian, Jingwen; Wang, Xianbao.
Affiliation
  • Xiong X; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials (Hubei University), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materia
  • Arshad N; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, PR China.
  • Tao J; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials (Hubei University), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materia
  • Alwadie N; Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh 11671, Saudi Arabia.
  • Liu G; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials (Hubei University), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materia
  • Lin L; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials (Hubei University), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materia
  • Yousaf Shah MAK; Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology/Energy Storage Joint Research Center School of Energy and Environment Southeast University, No. 2 Si Pai Lou, Nanjing 210096, PR China.
  • Irshad MS; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials (Hubei University), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materia
  • Qian J; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials (Hubei University), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materia
  • Wang X; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials (Hubei University), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materia
J Colloid Interface Sci ; 668: 385-398, 2024 Aug 15.
Article de En | MEDLINE | ID: mdl-38685164
ABSTRACT
Desalination processes frequently require a lot of energy to generate freshwater and energy, which depletes resources. Their reliance on each other creates tension between these two vital resources. Herein, hierarchical MXene nanosheets and bismuth vanadate (Ti3C2/BiVO4)-derived microcapsules were synthesized for a photothermal-induced photoredox reaction for twofold applications, namely, solar-driven water evaporation and hydrogen (H2) production. For this purpose, flexible aerogels were fabricated by introducing Ti3C2/BiVO4 microcapsules in the polymeric network of natural rubber latex (NRL-Ti3C2/BiVO4), and a high evaporation rate of 2.01 kg m-2 h-1 was achieved under 1-kW m-2 solar intensity. The excellent performance is attributed to the presence of Ti3C2/BiVO4 microcapsules in the polymeric network, which provides balanced hydrophilicity and broadband sun absorption (96 %) and is aimed at plasmonic heating with microscale thermal confinement tailored by heat transfer simulations. Notably, localized plasmonic heating at the catalyst active sites of the Ti3C2/BiVO4 heterostructure promotes enhanced photocatalytic H2 production evolved after 4 h of reaction is 9.39 µmol, which is highly efficient than pure BiVO4 and Ti3C2. This method turns the issue of water-fuel crisis into a collaborative connection, presenting avenues to collectively address the anticipated demand rather than fostering competition.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: J Colloid Interface Sci Année: 2024 Type de document: Article Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: J Colloid Interface Sci Année: 2024 Type de document: Article Pays de publication: États-Unis d'Amérique