Your browser doesn't support javascript.
loading
Quantum Equation of Motion with Orbital Optimization for Computing Molecular Properties in Near-Term Quantum Computing.
Jensen, Phillip W K; Kjellgren, Erik Rosendahl; Reinholdt, Peter; Ziems, Karl Michael; Coriani, Sonia; Kongsted, Jacob; Sauer, Stephan P A.
Affiliation
  • Jensen PWK; Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark.
  • Kjellgren ER; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark.
  • Reinholdt P; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark.
  • Ziems KM; Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark.
  • Coriani S; Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark.
  • Kongsted J; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark.
  • Sauer SPA; Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark.
J Chem Theory Comput ; 20(9): 3613-3625, 2024 May 14.
Article de En | MEDLINE | ID: mdl-38701352
ABSTRACT
Determining the properties of molecules and materials is one of the premier applications of quantum computing. A major question in the field is how to use imperfect near-term quantum computers to solve problems of practical value. Inspired by the recently developed variants of the quantum counterpart of the equation-of-motion (qEOM) approach and the orbital-optimized variational quantum eigensolver (oo-VQE), we present a quantum algorithm (oo-VQE-qEOM) for the calculation of molecular properties by computing expectation values on a quantum computer. We perform noise-free quantum simulations of BeH2 in the series of STO-3G/6-31G/6-31G* basis sets and of H4 and H2O in 6-31G using an active space of four electrons and four spatial orbitals (8 qubits) to evaluate excitation energies, electronic absorption, and, for twisted H4, circular dichroism spectra. We demonstrate that the proposed algorithm can reproduce the results of conventional classical CASSCF calculations for these molecular systems.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: J Chem Theory Comput / J. chem. theory comput. (Online) / Journal of chemical theory and computation (Online) Année: 2024 Type de document: Article Pays d'affiliation: Danemark Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: J Chem Theory Comput / J. chem. theory comput. (Online) / Journal of chemical theory and computation (Online) Année: 2024 Type de document: Article Pays d'affiliation: Danemark Pays de publication: États-Unis d'Amérique