Your browser doesn't support javascript.
loading
Glycogen synthesis prevents metabolic imbalance and disruption of photosynthetic electron transport from photosystem II during transition to photomixotrophy in Synechocystis sp. PCC 6803.
Ortega-Martínez, Pablo; Nikkanen, Lauri; Wey, Laura T; Florencio, Francisco J; Allahverdiyeva, Yagut; Díaz-Troya, Sandra.
Affiliation
  • Ortega-Martínez P; Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, Sevilla, 41092, Spain.
  • Nikkanen L; Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, Sevilla, 41012, Spain.
  • Wey LT; Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI-20014, Finland.
  • Florencio FJ; Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI-20014, Finland.
  • Allahverdiyeva Y; Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, Sevilla, 41092, Spain.
  • Díaz-Troya S; Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, Sevilla, 41012, Spain.
New Phytol ; 243(1): 162-179, 2024 Jul.
Article de En | MEDLINE | ID: mdl-38706429
ABSTRACT
Some cyanobacteria can grow photoautotrophically or photomixotrophically by using simultaneously CO2 and glucose. The switch between these trophic modes and the role of glycogen, their main carbon storage macromolecule, was investigated. We analysed the effect of glucose addition on the physiology, metabolic and photosynthetic state of Synechocystis sp. PCC 6803 and mutants lacking phosphoglucomutase and ADP-glucose pyrophosphorylase, with limitations in glycogen synthesis. Glycogen acted as a metabolic buffer glucose addition increased growth and glycogen reserves in the wild-type (WT), but arrested growth in the glycogen synthesis mutants. Already 30 min after glucose addition, metabolites from the Calvin-Benson-Bassham cycle and the oxidative pentose phosphate shunt increased threefold more in the glycogen synthesis mutants than the WT. These alterations substantially affected the photosynthetic performance of the glycogen synthesis mutants, as O2 evolution and CO2 uptake were both impaired. We conclude that glycogen synthesis is essential during transitions to photomixotrophy to avoid metabolic imbalance that induces inhibition of electron transfer from PSII and subsequently accumulation of reactive oxygen species, loss of PSII core proteins, and cell death. Our study lays foundations for optimising photomixotrophy-based biotechnologies through understanding the coordination of the crosstalk between photosynthetic electron transport and metabolism.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Photosynthèse / Complexe protéique du photosystème II / Synechocystis / Glycogène Langue: En Journal: New Phytol Sujet du journal: BOTANICA Année: 2024 Type de document: Article Pays d'affiliation: Espagne Pays de publication: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Photosynthèse / Complexe protéique du photosystème II / Synechocystis / Glycogène Langue: En Journal: New Phytol Sujet du journal: BOTANICA Année: 2024 Type de document: Article Pays d'affiliation: Espagne Pays de publication: Royaume-Uni