Your browser doesn't support javascript.
loading
Unveiling the molecular mechanisms of size-dependent effect of polystyrene micro/nano-plastics on Chlamydomonas reinhardtii through proteomic profiling.
Li, Xiaoxue; Chu, Zheng; Feng, Chenran; Song, Ping; Yang, Tong; Zhou, Lirun; Zhao, Xin; Chai, Xin; Xing, Jiale; Chen, Sa; Zhang, Junzhe; Wang, Jigang; Liu, Gang; Tang, Huan.
Affiliation
  • Li X; Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Scien
  • Chu Z; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
  • Feng C; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
  • Song P; Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
  • Yang T; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
  • Zhou L; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
  • Zhao X; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
  • Chai X; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
  • Xing J; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
  • Chen S; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
  • Zhang J; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
  • Wang J; Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Scien
  • Liu G; Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. Electronic address: lg2781@smu.edu.cn.
  • Tang H; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. Electronic address: htang@icmm.ac.cn.
Chemosphere ; 358: 142220, 2024 Jun.
Article de En | MEDLINE | ID: mdl-38710410
ABSTRACT
Microplastics have become a prevalent environmental pollutant due to widespread release and production. Algae, as primary producers, play a crucial role in maintaining the ecological balance of freshwater environments. Despite reports on the inhibition of microalgae by microplastics, the size-dependent effects on microalgae and associated molecular mechanism remain poorly understood. This study investigates the impacts of three polystyrene micro/nano-plastics (PS-MNPs) with different sizes (100 nm, 350 nm, and 6 µm) and concentrations (25-200 mg/L) on Chlamydomonas reinhardtii (C. reinhardtii) throughout its growth period. Results reveal size- and concentration-dependent growth inhibition and induction of oxidative stress by PS-MNPs, with microalgae exhibiting increased vulnerability to smaller-sized and higher-concentration PS-MNPs. Proteomics analysis elucidates the size-dependent suppression of proteins involved in the photosynthesis process by PS-MNPs. Photosynthetic activity assays demonstrate that smaller PS-MNPs more significantly reduce chlorophyll content and the maximal photochemical efficiency of photosystem II. Finally, electron microscope and Western blot assays collectively confirm the size effect of PS-MNPs on microalgae growth is attributable to suppressed protein expression rather than shading effects. This study contributes to advancing our understanding of the intricate interactions between micro/nano-plastics and algae at the molecular level, emphasizing the efficacy of proteomics in dissecting the mechanistic aspects of microplastics-induced biological effects on environmental indicator organisms.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Photosynthèse / Polystyrènes / Chlamydomonas reinhardtii / Protéomique / Microplastiques Langue: En Journal: Chemosphere Année: 2024 Type de document: Article

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Photosynthèse / Polystyrènes / Chlamydomonas reinhardtii / Protéomique / Microplastiques Langue: En Journal: Chemosphere Année: 2024 Type de document: Article