Your browser doesn't support javascript.
loading
Cationic Lipid Pairs Enhance Liver-to-Lung Tropism of Lipid Nanoparticles for In Vivo mRNA Delivery.
Zeng, Gege; He, Zepeng; Yang, Haihong; Gao, Zhan; Ge, Xueer; Liu, Lixin; Liu, Zhijia; Chen, Yongming.
Affiliation
  • Zeng G; School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510006, China.
  • He Z; School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510006, China.
  • Yang H; School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510006, China.
  • Gao Z; School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510006, China.
  • Ge X; School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510006, China.
  • Liu L; School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510006, China.
  • Liu Z; School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510006, China.
  • Chen Y; School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510006, China.
ACS Appl Mater Interfaces ; 16(20): 25698-25709, 2024 May 22.
Article de En | MEDLINE | ID: mdl-38717294
ABSTRACT
Much of current clinical interest has focused on mRNA therapeutics for the treatment of lung-associated diseases, such as infections, genetic disorders, and cancers. However, the safe and efficient delivery of mRNA therapeutics to the lungs, especially to different pulmonary cell types, is still a formidable challenge. In this paper, we proposed a cationic lipid pair (CLP) strategy, which utilized the liver-targeted ionizable lipid and its derived quaternary ammonium lipid as the CLP to improve liver-to-lung tropism of four-component lipid nanoparticles (LNPs) for in vivo mRNA delivery. Interestingly, the structure-activity investigation identified that using liver-targeted ionizable lipids with higher mRNA delivery performance and their derived lipid counterparts is the optimal CLP design for improving lung-targeted mRNA delivery. The CLP strategy was also verified to be universal and suitable for clinically available ionizable lipids such as SM-102 and ALC-0315 to develop lung-targeted LNP delivery systems. Moreover, we demonstrated that CLP-based LNPs were safe and exhibited potent mRNA transfection in pulmonary endothelial and epithelial cells. As a result, we provided a powerful CLP strategy for shifting the mRNA delivery preference of LNPs from the liver to the lungs, exhibiting great potential for broadening the application scenario of mRNA-based therapy.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: ARN messager / Cations / Nanoparticules / Lipides / Foie / Poumon Limites: Animals / Humans Langue: En Journal: ACS Appl Mater Interfaces Sujet du journal: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Année: 2024 Type de document: Article Pays d'affiliation: Chine

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: ARN messager / Cations / Nanoparticules / Lipides / Foie / Poumon Limites: Animals / Humans Langue: En Journal: ACS Appl Mater Interfaces Sujet du journal: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Année: 2024 Type de document: Article Pays d'affiliation: Chine
...