Your browser doesn't support javascript.
loading
Receptor Ligand-Free Mesoporous Silica Nanoparticles: A Streamlined Strategy for Targeted Drug Delivery across the Blood-Brain Barrier.
Chen, Zih-An; Wu, Cheng-Hsun; Wu, Si-Han; Huang, Chiung-Yin; Mou, Chung-Yuan; Wei, Kuo-Chen; Yen, Yun; Chien, I-Ting; Runa, Sabiha; Chen, Yi-Ping; Chen, Peilin.
Affiliation
  • Chen ZA; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
  • Wu CH; Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
  • Wu SH; Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan.
  • Huang CY; Nano Targeting & Therapy Biopharma Inc., Taipei 10087, Taiwan.
  • Mou CY; Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
  • Wei KC; International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
  • Yen Y; Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
  • Chien IT; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
  • Runa S; Nano Targeting & Therapy Biopharma Inc., Taipei 10087, Taiwan.
  • Chen YP; Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
  • Chen P; Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
ACS Nano ; 18(20): 12716-12736, 2024 May 21.
Article de En | MEDLINE | ID: mdl-38718220
ABSTRACT
Mesoporous silica nanoparticles (MSNs) represent a promising avenue for targeted brain tumor therapy. However, the blood-brain barrier (BBB) often presents a formidable obstacle to efficient drug delivery. This study introduces a ligand-free PEGylated MSN variant (RMSN25-PEG-TA) with a 25 nm size and a slight positive charge, which exhibits superior BBB penetration. Utilizing two-photon imaging, RMSN25-PEG-TA particles remained in circulation for over 24 h, indicating significant traversal beyond the cerebrovascular realm. Importantly, DOX@RMSN25-PEG-TA, our MSN loaded with doxorubicin (DOX), harnessed the enhanced permeability and retention (EPR) effect to achieve a 6-fold increase in brain accumulation compared to free DOX. In vivo evaluations confirmed the potent inhibition of orthotopic glioma growth by DOX@RMSN25-PEG-TA, extending survival rates in spontaneous brain tumor models by over 28% and offering an improved biosafety profile. Advanced LC-MS/MS investigations unveiled a distinctive protein corona surrounding RMSN25-PEG-TA, suggesting proteins such as apolipoprotein E and albumin could play pivotal roles in enabling its BBB penetration. Our results underscore the potential of ligand-free MSNs in treating brain tumors, which supports the development of future drug-nanoparticle design paradigms.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Barrière hémato-encéphalique / Doxorubicine / Systèmes de délivrance de médicaments / Silice / Nanoparticules Limites: Animals / Humans Langue: En Journal: ACS Nano Année: 2024 Type de document: Article Pays d'affiliation: Taïwan

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Barrière hémato-encéphalique / Doxorubicine / Systèmes de délivrance de médicaments / Silice / Nanoparticules Limites: Animals / Humans Langue: En Journal: ACS Nano Année: 2024 Type de document: Article Pays d'affiliation: Taïwan
...