Your browser doesn't support javascript.
loading
Oxidation effects on Microcystis aeruginosa inactivation through various reactive oxygen species: Degradation efficiency, mechanisms, and physiological properties.
Zheng, Heshan; Zheng, Yongjie; Yuan, Le; Li, Shuo; Niu, Junfeng; Dong, Xu; Kit Leong, Yoong; Lee, Duu-Jong; Chang, Jo-Shu.
Affiliation
  • Zheng H; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
  • Zheng Y; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
  • Yuan L; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
  • Li S; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China. Electronic address: shuo_105@163.com.
  • Niu J; College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
  • Dong X; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
  • Kit Leong Y; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan.
  • Lee DJ; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong, China.
  • Chang JS; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Eng
Bioresour Technol ; 402: 130806, 2024 Jun.
Article de En | MEDLINE | ID: mdl-38718906
ABSTRACT
The study investigated the inactivation of Microcystis aeruginosa using a combined approach involving thermally activated peroxyacetic acid (Heat/PAA) and thermally activated persulfate (Heat/PDS). The Heat/PDS algal inactivation process conforms to first-order reaction kinetics. Both hydroxyl radical (•OH) and sulfate radical (SO4-•) significantly impact the disruption of cell integrity, with SO4-• assuming a predominant role. PAA appears to activate organic radicals (RO•), hydroxyl (•OH), and a minimal amount of singlet oxygen (1O2). A thorough analysis underscores persulfate's superior ability to disrupt algal cell membranes. Additionally, SO4-• can convert small-molecule proteins into aromatic hydrocarbons, accelerating cell lysis. PAA can accelerate cell death by diffusing into the cell membrane and triggering advanced oxidative reactions within the cell. This study validates the effectiveness of the thermally activated persulfate process and the thermally activated peroxyacetic acid as strategies for algae inactivation.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Oxydoréduction / Espèces réactives de l'oxygène / Microcystis Langue: En Journal: Bioresour Technol Sujet du journal: ENGENHARIA BIOMEDICA Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Oxydoréduction / Espèces réactives de l'oxygène / Microcystis Langue: En Journal: Bioresour Technol Sujet du journal: ENGENHARIA BIOMEDICA Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: Royaume-Uni