Your browser doesn't support javascript.
loading
High sensitivity in quantitative analysis of mixed-size polystyrene micro/nanoplastics in one step.
Xu, Wenhui; Dai, Zhenqing; Huang, Xiaoxin; Jiang, Guangzheng; Chang, Min; Wang, Chenying; Lai, Tingting; Liu, Huanming; Sun, Ruikun; Li, Chengyong.
Affiliation
  • Xu W; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjian
  • Dai Z; School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China. Electron
  • Huang X; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjian
  • Jiang G; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjian
  • Chang M; School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China.
  • Wang C; School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China.
  • Lai T; School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China.
  • Liu H; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjian
  • Sun R; School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China.
  • Li C; School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China. Electron
Sci Total Environ ; 934: 173314, 2024 Jul 15.
Article de En | MEDLINE | ID: mdl-38761937
ABSTRACT
As emerging environmental pollutants, microplastics (MPs) and nanoplastics (NPs) pose a serious threat to human health. Owing to the lack of feasible and reliable analytical methods, the separation and identification of MPs and NPs of different sizes remains a challenge. In this study, a hyphenated method involving filtration and surface-enhanced Raman spectroscopy (SERS) for the separation and identification of MPs and NPs is reported. This method not only avoids the loss of MPs and NPs during the transfer process but also provides an excellent SERS substrate. The SERS substrate was fabricated by electrochemically depositing silver particles onto the reduced graphene oxide layer coated on stainless steel mesh. Results show that polystyrene (PS) MPs and NPs are efficiently separated on the SERS substrate via vacuum filtration, resulting in high retention rates (74.26 % ± 1.58 % for 100 nm, 81.06 % ± 1.49 % for 500 nm, and 97.73 % ±0.11 % for 5 µm) and low limit of detection (LOD). The LOD values of 100 nm, 500 nm, and 5 µm PS are 8.89 × 10-5, 3.39 × 10-5, and 1.57 × 10-4 µg/mL, respectively. More importantly, a linear relationship for uniform quantification of 100 nm, 500 nm, 3 µm and 5 µm PS was established, and the relationship is Y = 225.61 lgX + 1076.36 with R2 = 0.980. The method was validated for the quantitative analysis of a mixture of 100 nm, 500 nm PS NPs, 3 µm and 5 µm PS MPs in a ratio of 1111, which successfully approaches the evaluation of evaluated PS NPs in the range of 10-4-10 µg/mL with an LOD value of approximately 7.82 × 10-5 µg/mL. Moreover, this method successfully detected (3.87 ± 0.06) × 10-5 µg MPs and NPs per gram of oyster tissue.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Polystyrènes / Analyse spectrale Raman / Microplastiques Langue: En Journal: Sci Total Environ Année: 2024 Type de document: Article Pays de publication: Pays-Bas

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Polystyrènes / Analyse spectrale Raman / Microplastiques Langue: En Journal: Sci Total Environ Année: 2024 Type de document: Article Pays de publication: Pays-Bas