Your browser doesn't support javascript.
loading
Spatio-temporal characterization of phenotypic resistance in malaria vector species.
Ibrahim, Eric Ali; Wamalwa, Mark; Odindi, John; Tonnang, Henri E Z.
Affiliation
  • Ibrahim EA; International Centre of Insect Physiology and Ecology (Icipe), PO box, Nairobi, 30772, Kenya.
  • Wamalwa M; School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa.
  • Odindi J; International Centre of Insect Physiology and Ecology (Icipe), PO box, Nairobi, 30772, Kenya.
  • Tonnang HEZ; School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa.
BMC Biol ; 22(1): 117, 2024 May 20.
Article de En | MEDLINE | ID: mdl-38764011
ABSTRACT

BACKGROUND:

Malaria, a deadly disease caused by Plasmodium protozoa parasite and transmitted through bites of infected female Anopheles mosquitoes, remains a significant public health challenge in sub-Saharan Africa. Efforts to eliminate malaria have increasingly focused on vector control using insecticides. However, the emergence of insecticide resistance (IR) in malaria vectors pose a formidable obstacle, and the current IR mapping models remain static, relying on fixed coefficients. This study introduces a dynamic spatio-temporal approach to characterize phenotypic resistance in Anopheles gambiae complex and Anopheles arabiensis. We developed a cellular automata (CA) model and applied it to data collected from Ethiopia, Nigeria, Cameroon, Chad, and Burkina Faso. The data encompasses georeferenced records detailing IR levels in mosquito vector populations across various classes of insecticides. In characterizing the dynamic patterns of confirmed resistance, we identified key driving factors through correlation analysis, chi-square tests, and extensive literature review.

RESULTS:

The CA model demonstrated robustness in capturing the spatio-temporal dynamics of confirmed IR states in the vector populations. In our model, the key driving factors included insecticide usage, agricultural activities, human population density, Land Use and Land Cover (LULC) characteristics, and environmental variables.

CONCLUSIONS:

The CA model developed offers a robust tool for countries that have limited data on confirmed IR in malaria vectors. The embrace of a dynamical modeling approach and accounting for evolving conditions and influences, contribute to deeper understanding of IR dynamics, and can inform effective strategies for malaria vector control, and prevention in regions facing this critical health challenge.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Résistance aux insecticides / Vecteurs moustiques / Paludisme / Anopheles Limites: Animals Pays/Région comme sujet: Africa Langue: En Journal: BMC Biol / BMC biology Sujet du journal: BIOLOGIA Année: 2024 Type de document: Article Pays d'affiliation: Kenya Pays de publication: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Résistance aux insecticides / Vecteurs moustiques / Paludisme / Anopheles Limites: Animals Pays/Région comme sujet: Africa Langue: En Journal: BMC Biol / BMC biology Sujet du journal: BIOLOGIA Année: 2024 Type de document: Article Pays d'affiliation: Kenya Pays de publication: Royaume-Uni