Your browser doesn't support javascript.
loading
Achieving Exceptional Volumetric Desalination Capacity Using Compact MoS2 Nanolaminates.
Ying, Ting; Xiong, Yu; Peng, Huarong; Yang, Ruijie; Mei, Liang; Zhang, Zhen; Zheng, Weikang; Yan, Ruixin; Zhang, Yue; Hu, Honglu; Ma, Chen; Chen, Ye; Xu, Xingtao; Yang, Juan; Voiry, Damien; Tang, Chuyang Y; Fan, Jun; Zeng, Zhiyuan.
Affiliation
  • Ying T; Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China.
  • Xiong Y; Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China.
  • Peng H; Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China.
  • Yang R; Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China.
  • Mei L; Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China.
  • Zhang Z; Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China.
  • Zheng W; Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China.
  • Yan R; Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China.
  • Zhang Y; Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China.
  • Hu H; Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China.
  • Ma C; Department of Chemistry, Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
  • Chen Y; Department of Chemistry, Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
  • Xu X; Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China.
  • Yang J; School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
  • Voiry D; Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier, 34000, France.
  • Tang CY; Department of Civil Engineering, University of Hong Kong, Hong Kong SAR, 999077, China.
  • Fan J; Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China.
  • Zeng Z; Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China.
Adv Mater ; 36(31): e2403385, 2024 Aug.
Article de En | MEDLINE | ID: mdl-38769003
ABSTRACT
Capacitive deionization (CDI) has emerged as a promising technology for freshwater recovery from low-salinity brackish water. It is still inapplicable in specific scenarios (e.g., households, islands, or offshore platforms) due to too low volumetric adsorption capacities. In this study, a high-density semi-metallic molybdenum disulfide (1T'-MoS2) electrode with compact architecture obtained by restacking of exfoliated nanosheets, which achieve high capacitance up to ≈277.5 F cm-3 under an ultrahigh scan rate of 1000 mV s-1 with a lower charge-transfer resistance and nearly tenfold higher electrochemical active surface area than the 2H-MoS2 electrode, is reported. Furthermore, 1T'-MoS2 electrode demonstrates exceptional volumetric desalination capacity of 65.1 mgNaCl cm-3 in CDI experiments. Ex situ X-ray diffraction (XRD) reveal that the cation storage mechanism with the dynamic expansion of 1T'-MoS2 interlayer to accommodate cations such as Na+, K+, Ca2+, and Mg2+, which in turn enhances the capacity. Theoretical analysis unveils that 1T' phase is thermodynamically preferable over 2H phase, the ion hydration and channel confinement also play critical role in enhancing ion adsorption. Overall, this work provides a new method to design compact 2D-layered nanolaminates with high-volumetric performance for CDI desalination.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Adv Mater Sujet du journal: BIOFISICA / QUIMICA Année: 2024 Type de document: Article

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Adv Mater Sujet du journal: BIOFISICA / QUIMICA Année: 2024 Type de document: Article