Your browser doesn't support javascript.
loading
Evaluation of Pm2.5 Influence on Human Lung Cancer Cells Using a Microfluidic Platform.
Nguyen, Uyen Thi Nhat; Hsieh, Han-Yun; Chin, Tzu-Yun; Wu, Guani; Lin, Yen Po; Lee, Ching-Yi; Hsu, Yi-Chiung; Fan, Yu-Jui.
Affiliation
  • Nguyen UTN; International Ph.D. Program in Cell Therapy and Regenerative Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
  • Hsieh HY; Institute of Applied Mechanics, National Taiwan University, Taipei 10617 Taiwan.
  • Chin TY; Department of Life Science, National Dong-Hwa University, Hualien, 974301 Taiwan.
  • Wu G; Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320, Taiwan.
  • Lin YP; Department of Statistics & Data Science, University of California Los Angeles, Los Angeles, CA 90095, USA.
  • Lee CY; Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320, Taiwan.
  • Hsu YC; Department of Critical Care Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
  • Fan YJ; Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320, Taiwan.
Int J Med Sci ; 21(6): 1117-1128, 2024.
Article de En | MEDLINE | ID: mdl-38774761
ABSTRACT
In this study, we developed a microfluidic device that is able to monitor cell biology under continuous PM2.5 treatment. The effects of PM2.5 on human alveolar basal epithelial cells, A549 cells, and uncovered several significant findings were investigated. The results showed that PM2.5 exposure did not lead to a notable decrease in cell viability, indicating that PM2.5 did not cause cellular injury or death. However, the study found that PM2.5 exposure increased the invasion and migration abilities of A549 cells, suggesting that PM2.5 might promote cell invasiveness. Results of RNA sequencing revealed 423 genes that displayed significant differential expression in response to PM2.5 exposure, with a particular focus on pathways associated with the generation of reactive oxygen species (ROS) and mitochondrial dysfunction. Real-time detection demonstrated an increase in ROS production in A549 cells after exposure to PM2.5. JC1 assay, which indicated a loss of mitochondrial membrane potential (ΔΨm) in A549 cells exposed to PM2.5. The disruption of mitochondrial membrane potential further supports the detrimental effects of PM2.5 on A549 cells. These findings highlight several adverse effects of PM2.5 on A549 cells, including enhanced invasion and migration capabilities, altered gene expression related to ROS pathways, increased ROS production and disruption of mitochondrial membrane potential. These findings contribute to our understanding of the potential mechanisms through which PM2.5 can impact cellular function and health.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Mouvement cellulaire / Survie cellulaire / Espèces réactives de l'oxygène / Matière particulaire / Potentiel de membrane mitochondriale / Tumeurs du poumon Limites: Humans Langue: En Journal: Int J Med Sci Sujet du journal: MEDICINA Année: 2024 Type de document: Article Pays d'affiliation: Taïwan Pays de publication: Australie

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Mouvement cellulaire / Survie cellulaire / Espèces réactives de l'oxygène / Matière particulaire / Potentiel de membrane mitochondriale / Tumeurs du poumon Limites: Humans Langue: En Journal: Int J Med Sci Sujet du journal: MEDICINA Année: 2024 Type de document: Article Pays d'affiliation: Taïwan Pays de publication: Australie