Your browser doesn't support javascript.
loading
Fungal identity mediates the impacts of multiple stressors on freshwater ecosystems.
Graça, Diana; Arias-Real, Rebeca; Fernandes, Isabel; Cássio, Fernanda; Pascoal, Cláudia.
Affiliation
  • Graça D; CBMA, Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S, Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. Electronic address: dianag
  • Arias-Real R; CBMA, Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S, Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Department of Evolutionary
  • Fernandes I; CBMA, Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S, Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. Electronic address: isabel
  • Cássio F; CBMA, Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S, Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. Electronic address: fcassi
  • Pascoal C; CBMA, Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S, Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. Electronic address: cpasco
Sci Total Environ ; 937: 173466, 2024 Aug 10.
Article de En | MEDLINE | ID: mdl-38788941
ABSTRACT
Predicting how multiple anthropogenic stressors affect natural ecosystems is a major challenge in ecology. Freshwater ecosystems are threatened worldwide by multiple co-occurring stressors, which can affect aquatic biodiversity, ecosystem functioning and human wellbeing. In stream ecosystems, aquatic fungi play a crucial role in global biogeochemical cycles and food web dynamics, therefore, assessing the functional consequences of fungal biodiversity loss under multiple stressors is crucial. Here, a microcosm approach was used to investigate the effects of multiple stressors (increased temperature and nutrients, drying, and biodiversity loss) on three ecosystem processes organic matter decomposition, fungal reproduction, and fungal biomass accrual. Net effects of stressors were antagonistic for organic matter decomposition, but additive for fungal reproduction and biomass accrual. Net effects of biodiversity were mainly positive for all processes, even under stress, demonstrating that diversity assures the maintenance of ecosystem processes. Fungal species displayed distinct contributions to each ecosystem process. Furthermore, species with negligible contributions under control conditions changed their role under stress, either enhancing or impairing the communities' performance, emphasizing the importance of fungal species identity. Our study highlights that distinct fungal species have different sensitivities to environmental variability and have different influence on the overall performance of the community. Therefore, preserving high fungal diversity is crucial to maintain fungal species with key ecosystem functions within aquatic communities in face of environmental change.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Écosystème / Biodiversité / Eau douce / Champignons Langue: En Journal: Sci Total Environ Année: 2024 Type de document: Article

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Écosystème / Biodiversité / Eau douce / Champignons Langue: En Journal: Sci Total Environ Année: 2024 Type de document: Article
...