Your browser doesn't support javascript.
loading
Anandamide Modulates Thermal Avoidance in Caenorhabditis elegans Through Vanilloid and Cannabinoid Receptor Interplay.
Abdollahi, Marzieh; Castaño, Jesus D; Salem, Jennifer Ben; Beaudry, Francis.
Affiliation
  • Abdollahi M; Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
  • Castaño JD; Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.
  • Salem JB; Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
  • Beaudry F; Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.
Neurochem Res ; 49(9): 2423-2439, 2024 Sep.
Article de En | MEDLINE | ID: mdl-38847909
ABSTRACT
Understanding the endocannabinoid system in C. elegans may offer insights into basic biological processes and potential therapeutic targets for managing pain and inflammation in human. It is well established that anandamide modulates pain perception by binding to cannabinoid and vanilloid receptors, regulating neurotransmitter release and neuronal activity. One objective of this study was to demonstrate the suitability of C. elegans as a model organism for assessing the antinociceptive properties of bioactive compounds and learning about the role of endocannabinoid system in C. elegans. The evaluation of the compound anandamide (AEA) revealed antinociceptive activity by impeding C. elegans nocifensive response to noxious heat. Proteomic and bioinformatic investigations uncovered several pathways activated by AEA. Enrichment analysis unveiled significant involvement of ion homeostasis pathways, which are crucial for maintaining neuronal function and synaptic transmission, suggesting AEA's impact on neurotransmitter release and synaptic plasticity. Additionally, pathways related to translation, protein synthesis, and mTORC1 signaling were enriched, highlighting potential mechanisms underlying AEA's antinociceptive effects. Thermal proteome profiling identified NPR-32 and NPR-19 as primary targets of AEA, along with OCR-2, Cathepsin B, Progranulin, Transthyretin, and ribosomal proteins. These findings suggest a complex interplay between AEA and various cellular processes implicated in nociceptive pathways and inflammation modulation. Further investigation into these interactions could provide valuable insights into the therapeutic potential of AEA and its targets for the management of pain-related conditions.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Acides arachidoniques / Caenorhabditis elegans / Endocannabinoïdes / Canaux cationiques TRPV / Amides gras polyinsaturés N-alkylés Limites: Animals Langue: En Journal: Neurochem Res Année: 2024 Type de document: Article Pays d'affiliation: Canada

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Acides arachidoniques / Caenorhabditis elegans / Endocannabinoïdes / Canaux cationiques TRPV / Amides gras polyinsaturés N-alkylés Limites: Animals Langue: En Journal: Neurochem Res Année: 2024 Type de document: Article Pays d'affiliation: Canada