Your browser doesn't support javascript.
loading
Aging-Associated Metabolite Methylmalonic Acid Increases Susceptibility to Pulmonary Fibrosis.
Xu, Kai; Ding, Linke; Li, Wenwen; Wang, Yaxuan; Ma, Shuaichen; Lian, Hui; Pan, Xiaoyue; Wan, Ruyan; Zhao, Weiming; Yang, Juntang; Rosas, Ivan; Wang, Lan; Yu, Guoying.
Affiliation
  • Xu K; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China.
  • Ding L; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China.
  • Li W; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China.
  • Wang Y; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China.
  • Ma S; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China.
  • Lian H; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China.
  • Pan X; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China.
  • Wan R; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China.
  • Zhao W; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China.
  • Yang J; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China.
  • Rosas I; Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas.
  • Wang L; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China. Electronic address: wan
  • Yu G; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China. Electronic address: guo
Am J Pathol ; 194(8): 1478-1493, 2024 08.
Article de En | MEDLINE | ID: mdl-38849030
ABSTRACT
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by pulmonary fibroblast overactivation, resulting in the accumulation of abnormal extracellular matrix and lung parenchymal damage. Although the pathogenesis of IPF remains unclear, aging was proposed as the most prominent nongenetic risk factor. Propionate metabolism undergoes reprogramming in the aging population, leading to the accumulation of the by-product methylmalonic acid (MMA). This study aimed to explore alterations in propionate metabolism in IPF and the impact of the by-product MMA on pulmonary fibrosis. It revealed alterations in the expression of enzymes involved in propionate metabolism within IPF lung tissues, characterized by an increase in propionyl-CoA carboxylase and methylmalonyl-CoA epimerase expression, and a decrease in methylmalonyl-CoA mutase expression. Knockdown of methylmalonyl-CoA mutase, the key enzyme in propionate metabolism, induced a profibrotic phenotype and activated co-cultured fibroblasts in A549 cells. MMA exacerbated bleomycin-induced mouse lung fibrosis and induced a profibrotic phenotype in both epithelial cells and fibroblasts through activation of the canonical transforming growth factor-ß/Smad pathway. Overall, these findings unveil an alteration of propionate metabolism in IPF, leading to MMA accumulation, thus exacerbating lung fibrosis through promoting profibrotic phenotypic transitions via the canonical transforming growth factor-ß/Smad signaling pathway.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Vieillissement / Fibrose pulmonaire idiopathique / Acide méthyl-malonique Limites: Aged / Animals / Female / Humans / Male / Middle aged Langue: En Journal: Am J Pathol Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Vieillissement / Fibrose pulmonaire idiopathique / Acide méthyl-malonique Limites: Aged / Animals / Female / Humans / Male / Middle aged Langue: En Journal: Am J Pathol Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: États-Unis d'Amérique