Your browser doesn't support javascript.
loading
The transcription factor OsSPL9 endows rice with copper deficiency resilience.
Wang, Wujian; Luo, Le; Shi, Huichao; Song, Yuxinrui; Wang, Junjie; Chen, Chen; Shen, Zhenguo; Rouached, Hatem; Zheng, Luqing.
Affiliation
  • Wang W; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
  • Luo L; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
  • Shi H; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
  • Song Y; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
  • Wang J; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
  • Chen C; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
  • Shen Z; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
  • Rouached H; Department of Plant, Soil, and Microbial Sciences, Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA.
  • Zheng L; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
J Exp Bot ; 75(18): 5909-5922, 2024 Sep 27.
Article de En | MEDLINE | ID: mdl-38863272
ABSTRACT
Copper (Cu) is a crucial micronutrient essential for the growth and development of plants. Rice exhibits remarkable resistance to Cu deficiency, but the underlying molecular mechanisms are not well understood. In this study, we reveal that the plant's ability to withstand Cu deficiency is orchestrated by a transcription factor known as OsSPL9. We have demonstrated that OsSPL9 functions as a central regulator of Cu homeostasis. Disrupting OsSPL9 through knockout significantly reduced the plant's tolerance to Cu deficiency. As a result, the spl9 mutants exhibited reduced Cu accumulation in their shoots when compared with wild-type plants. This reduction was linked to a disruption in the transport of Cu from older leaves to younger ones. Furthermore, we show that OsSPL9 directly bound to GTAC motifs in the promoters of key genes involved in Cu uptake and transport, as well as Cu-miRNAs, and enhanced their transcription under Cu-deficient conditions. Overall, our findings shed light on the molecular basis of rice resilience to Cu deficiency stress and place the transcription factor OsSPL9 as a master regulator of this response.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Protéines végétales / Oryza / Facteurs de transcription / Cuivre Langue: En Journal: J Exp Bot / J. exp. bot. (Online) / Journal of experimental botany (Online) Sujet du journal: BOTANICA Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Protéines végétales / Oryza / Facteurs de transcription / Cuivre Langue: En Journal: J Exp Bot / J. exp. bot. (Online) / Journal of experimental botany (Online) Sujet du journal: BOTANICA Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: Royaume-Uni