Using machine learning to distinguish between authentic and imitation Jackson Pollock poured paintings: A tile-driven approach to computer vision.
PLoS One
; 19(6): e0302962, 2024.
Article
de En
| MEDLINE
| ID: mdl-38885208
ABSTRACT
Jackson Pollock's abstract poured paintings are celebrated for their striking aesthetic qualities. They are also among the most financially valued and imitated artworks, making them vulnerable to high-profile controversies involving Pollock-like paintings of unknown origin. Given the increased employment of artificial intelligence applications across society, we investigate whether established machine learning techniques can be adopted by the art world to help detect imitation Pollocks. The low number of images compared to typical artificial intelligence projects presents a potential limitation for art-related applications. To address this limitation, we develop a machine learning strategy involving a novel image ingestion method which decomposes the images into sets of multi-scaled tiles. Leveraging the power of transfer learning, this approach distinguishes between authentic and imitation poured artworks with an accuracy of 98.9%. The machine also uses the multi-scaled tiles to generate novel visual aids and interpretational parameters which together facilitate comparisons between the machine's results and traditional investigations of Pollock's artistic style.
Texte intégral:
1
Collection:
01-internacional
Base de données:
MEDLINE
Sujet principal:
Peintures (art)
/
Apprentissage machine
Limites:
Humans
Langue:
En
Journal:
PLoS One
Sujet du journal:
CIENCIA
/
MEDICINA
Année:
2024
Type de document:
Article
Pays d'affiliation:
États-Unis d'Amérique
Pays de publication:
États-Unis d'Amérique