Your browser doesn't support javascript.
loading
Using machine learning to distinguish between authentic and imitation Jackson Pollock poured paintings: A tile-driven approach to computer vision.
Smith, Julian H; Holt, Caleb; Smith, Nickolaus H; Taylor, Richard P.
Affiliation
  • Smith JH; Cloudsmiths LLC, Eugene, OR, United States of America.
  • Holt C; LightningHolt LLC, Eugene, OR, United States of America.
  • Smith NH; Cloudsmiths LLC, Eugene, OR, United States of America.
  • Taylor RP; Fractals Research LLC, Eugene, OR, United States of America.
PLoS One ; 19(6): e0302962, 2024.
Article de En | MEDLINE | ID: mdl-38885208
ABSTRACT
Jackson Pollock's abstract poured paintings are celebrated for their striking aesthetic qualities. They are also among the most financially valued and imitated artworks, making them vulnerable to high-profile controversies involving Pollock-like paintings of unknown origin. Given the increased employment of artificial intelligence applications across society, we investigate whether established machine learning techniques can be adopted by the art world to help detect imitation Pollocks. The low number of images compared to typical artificial intelligence projects presents a potential limitation for art-related applications. To address this limitation, we develop a machine learning strategy involving a novel image ingestion method which decomposes the images into sets of multi-scaled tiles. Leveraging the power of transfer learning, this approach distinguishes between authentic and imitation poured artworks with an accuracy of 98.9%. The machine also uses the multi-scaled tiles to generate novel visual aids and interpretational parameters which together facilitate comparisons between the machine's results and traditional investigations of Pollock's artistic style.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Peintures (art) / Apprentissage machine Limites: Humans Langue: En Journal: PLoS One Sujet du journal: CIENCIA / MEDICINA Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Peintures (art) / Apprentissage machine Limites: Humans Langue: En Journal: PLoS One Sujet du journal: CIENCIA / MEDICINA Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: États-Unis d'Amérique