Your browser doesn't support javascript.
loading
Low potassium activation of proximal mTOR/AKT signaling is mediated by Kir4.2.
Zhang, Yahua; Bock, Fabian; Ferdaus, Mohammed; Arroyo, Juan Pablo; L Rose, Kristie; Patel, Purvi; Denton, Jerod S; Delpire, Eric; Weinstein, Alan M; Zhang, Ming-Zhi; Harris, Raymond C; Terker, Andrew S.
Affiliation
  • Zhang Y; Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
  • Bock F; Vanderbilt Center for Kidney Disease, Nashville, TN, USA.
  • Ferdaus M; Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
  • Arroyo JP; Vanderbilt Center for Kidney Disease, Nashville, TN, USA.
  • L Rose K; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA.
  • Patel P; Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
  • Denton JS; Vanderbilt Center for Kidney Disease, Nashville, TN, USA.
  • Delpire E; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
  • Weinstein AM; Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
  • Zhang MZ; Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
  • Harris RC; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA.
  • Terker AS; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA.
Nat Commun ; 15(1): 5144, 2024 Jun 17.
Article de En | MEDLINE | ID: mdl-38886379
ABSTRACT
The renal epithelium is sensitive to changes in blood potassium (K+). We identify the basolateral K+ channel, Kir4.2, as a mediator of the proximal tubule response to K+ deficiency. Mice lacking Kir4.2 have a compensated baseline phenotype whereby they increase their distal transport burden to maintain homeostasis. Upon dietary K+ depletion, knockout animals decompensate as evidenced by increased urinary K+ excretion and development of a proximal renal tubular acidosis. Potassium wasting is not proximal in origin but is caused by higher ENaC activity and depends upon increased distal sodium delivery. Three-dimensional imaging reveals Kir4.2 knockouts fail to undergo proximal tubule expansion, while the distal convoluted tubule response is exaggerated. AKT signaling mediates the dietary K+ response, which is blunted in Kir4.2 knockouts. Lastly, we demonstrate in isolated tubules that AKT phosphorylation in response to low K+ depends upon mTORC2 activation by secondary changes in Cl- transport. Data support a proximal role for cell Cl- which, as it does along the distal nephron, responds to K+ changes to activate kinase signaling.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Potassium / Transduction du signal / Souris knockout / Canaux potassiques rectifiants entrants / Protéines proto-oncogènes c-akt / Sérine-thréonine kinases TOR / Complexe-2 cible mécanistique de la rapamycine / Tubules contournés proximaux Limites: Animals Langue: En Journal: Nat Commun Sujet du journal: BIOLOGIA / CIENCIA Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Potassium / Transduction du signal / Souris knockout / Canaux potassiques rectifiants entrants / Protéines proto-oncogènes c-akt / Sérine-thréonine kinases TOR / Complexe-2 cible mécanistique de la rapamycine / Tubules contournés proximaux Limites: Animals Langue: En Journal: Nat Commun Sujet du journal: BIOLOGIA / CIENCIA Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique