Your browser doesn't support javascript.
loading
Entropy-Driven Hybrid Gel Electrolyte Enables Practical High-Voltage Lithium Metal Batteries.
Jing, Chuyang; Peng, Ziyu; Yan, Kunyun; Chen, Libao; Zhang, Chunxiao; Wei, Weifeng.
Affiliation
  • Jing C; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China.
  • Peng Z; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China.
  • Yan K; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China.
  • Chen L; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China.
  • Zhang C; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China.
  • Wei W; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China.
ACS Appl Mater Interfaces ; 16(26): 33647-33656, 2024 Jul 03.
Article de En | MEDLINE | ID: mdl-38898674
ABSTRACT
Electrolyte engineering plays a crucial role in enhancing the performance of lithium metal batteries (LMBs) featuring high-voltage cathodes and limited lithium anodes, thereby unlocking their potential for high-energy electrochemical storage. Herein, an entropy-driven hybrid gel electrolyte with enhanced diversity in Li-ion solvation structures is designed by incorporating substantial amounts of insoluble LiPO2F2 and LiNO3 salts into LiPF6-based carbonate electrolytes, followed by in situ thermal polymerization. Specifically, the Li+ solvation structures are modulated via ionophilic NO3- and PO2F2- to generate an anion-rich solvation sheath and thus promote anion reduction at the electrode-electrolyte interface. The interfaces enriched in anion-derived inorganic components facilitate rapid ionic transport, thus enabling smooth and dense Li morphology and ultimately enhancing the electrochemical performance of LMBs. As a result, this high-hybrid gel electrolyte confers LMBs employing high-voltage NCM cathodes, as demonstrated by sustained performance in both coin-cell (500 cycles at 4.5 V) and Ah-level pouch cell configurations under practical conditions (60 cycles, N/P 1.92, and E/C 2.0 g Ah -1).
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: ACS Appl Mater Interfaces Sujet du journal: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Année: 2024 Type de document: Article Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: ACS Appl Mater Interfaces Sujet du journal: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Année: 2024 Type de document: Article Pays de publication: États-Unis d'Amérique