Nano-enzyme functionalized hydrogels promote diabetic wound healing through immune microenvironment modulation.
Biomater Sci
; 12(15): 3851-3865, 2024 Jul 23.
Article
de En
| MEDLINE
| ID: mdl-38899957
ABSTRACT
Non-healing diabetic wounds often culminate in amputation and mortality. The main pathophysiological features in diabetic wounds involve the accumulation of M1-type macrophages and excessive oxidative stress. In this study, we engineered a nano-enzyme functionalized hydrogel by incorporating a magnesium ion-doped molybdenum-based polymetallic oxide (Mg-POM), a novel bioactive nano-enzyme, into a GelMA hydrogel, to obtain the GelMA@Mg-POM system to enhance diabetic wound healing. GelMA@Mg-POM was crosslinked using UV light, yielding a hydrogel with a uniformly porous three-dimensional mesh structure. In vitro experiments showed that GelMA@Mg-POM extraction significantly enhanced human umbilical vein endothelial cell (HUVEC) migration, scavenged ROS, improved the inflammatory microenvironment, induced macrophage reprogramming towards M2, and promoted HUVEC regeneration of CD31 and fibroblast regeneration of type I collagen. In in vivo experiments, diabetic rat wounds treated with GelMA@Mg-POM displayed enhanced granulation tissue genesis and collagen production, as evidenced by HE and Masson staining. Immunohistochemistry demonstrated the ability of GelMA@Mg-POM to mitigate macrophage-associated inflammatory responses and promote angiogenesis. Overall, these findings suggest that GelMA@Mg-POM holds significant promise as a biomaterial for treating diabetic wounds.
Texte intégral:
1
Collection:
01-internacional
Base de données:
MEDLINE
Sujet principal:
Cicatrisation de plaie
/
Hydrogels
/
Diabète expérimental
/
Cellules endothéliales de la veine ombilicale humaine
Limites:
Animals
/
Humans
/
Male
Langue:
En
Journal:
Biomater Sci
Année:
2024
Type de document:
Article
Pays de publication:
Royaume-Uni