Your browser doesn't support javascript.
loading
Reverse engineering neuron type-specific and type-orthogonal splicing-regulatory networks using single-cell transcriptomes.
Moakley, Daniel F; Campbell, Melissa; Anglada-Girotto, Miquel; Feng, Huijuan; Califano, Andrea; Au, Edmund; Zhang, Chaolin.
Affiliation
  • Moakley DF; Department of Systems Biology, Columbia University, New York, NY 10032, USA.
  • Campbell M; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
  • Anglada-Girotto M; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA.
  • Feng H; Department of Systems Biology, Columbia University, New York, NY 10032, USA.
  • Califano A; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
  • Au E; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA.
  • Zhang C; Present address: Department of Neurosciences, University of California, San Diego, USA.
bioRxiv ; 2024 Jun 15.
Article de En | MEDLINE | ID: mdl-38915499
ABSTRACT
Cell type-specific alternative splicing (AS) enables differential gene isoform expression between diverse neuron types with distinct identities and functions. Current studies linking individual RNA-binding proteins (RBPs) to AS in a few neuron types underscore the need for holistic modeling. Here, we use network reverse engineering to derive a map of the neuron type-specific AS regulatory landscape from 133 mouse neocortical cell types defined by single-cell transcriptomes. This approach reliably inferred the regulons of 350 RBPs and their cell type-specific activities. Our analysis revealed driving factors delineating neuronal identities, among which we validated Elavl2 as a key RBP for MGE-specific splicing in GABAergic interneurons using an in vitro ESC differentiation system. We also identified a module of exons and candidate regulators specific for long- and short-projection neurons across multiple neuronal classes. This study provides a resource for elucidating splicing regulatory programs that drive neuronal molecular diversity, including those that do not align with gene expression-based classifications.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: BioRxiv Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: BioRxiv Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: États-Unis d'Amérique