Your browser doesn't support javascript.
loading
Nanoscale architecture of synaptic vesicles and scaffolding complexes revealed by cryo-electron tomography.
Held, Richard G; Liang, Jiahao; Brunger, Axel T.
Affiliation
  • Held RG; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305.
  • Liang J; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305.
  • Brunger AT; Department of Structural Biology, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A ; 121(27): e2403136121, 2024 Jul 02.
Article de En | MEDLINE | ID: mdl-38923992
ABSTRACT
The spatial distribution of proteins and their arrangement within the cellular ultrastructure regulates the opening of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in response to glutamate release at the synapse. Fluorescence microscopy imaging revealed that the postsynaptic density (PSD) and scaffolding proteins in the presynaptic active zone (AZ) align across the synapse to form a trans-synaptic "nanocolumn," but the relation to synaptic vesicle release sites is uncertain. Here, we employ focused-ion beam (FIB) milling and cryoelectron tomography to image synapses under near-native conditions. Improved image contrast, enabled by FIB milling, allows simultaneous visualization of supramolecular nanoclusters within the AZ and PSD and synaptic vesicles. Surprisingly, membrane-proximal synaptic vesicles, which fuse to release glutamate, are not preferentially aligned with AZ or PSD nanoclusters. These synaptic vesicles are linked to the membrane by peripheral protein densities, often consistent in size and shape with Munc13, as well as globular densities bridging the synaptic vesicle and plasma membrane, consistent with prefusion complexes of SNAREs, synaptotagmins, and complexin. Monte Carlo simulations of synaptic transmission events using biorealistic models guided by our tomograms predict that clustering AMPARs within PSD nanoclusters increases the variability of the postsynaptic response but not its average amplitude. Together, our data support a model in which synaptic strength is tuned at the level of single vesicles by the spatial relationship between scaffolding nanoclusters and single synaptic vesicle fusion sites.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Vésicules synaptiques / Tomographie en microscopie électronique Limites: Animals Langue: En Journal: Proc Natl Acad Sci U S A / Proc. Natl. Acad. Sci. U. S. A / Proceedings of the national academy of sciences of the United States of America Année: 2024 Type de document: Article Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Vésicules synaptiques / Tomographie en microscopie électronique Limites: Animals Langue: En Journal: Proc Natl Acad Sci U S A / Proc. Natl. Acad. Sci. U. S. A / Proceedings of the national academy of sciences of the United States of America Année: 2024 Type de document: Article Pays de publication: États-Unis d'Amérique